Internal Assessment Test | — November 2024
Sub: | Software Engineering and Project Management Sub Code: | BCS501 ‘ Branch: | ISE
Date: | 07-11-2024 | Duration: | 90 min’s | Max Marks: |50 | Sem/Sec: | V/A,B&C OBE
Answer any FIVE FULL Questions MARKS co RTB
1 |a. Write the IEEE’s definition of Software Engineering? Briefly explain the nature of software? 5 CO1| L1
Scheme: a: 2+3M 5

Solutions: IEEE Definition: The IEEE [IEE93a] has developed a more comprehensive definition
when it states: Software Engineering: (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software; that is, the
application of engineering to software. (2) The study of approaches as in (1).Instructions
(computer programs) that when executed provide desired function and performance,data
structures that enable the programs to adequately manipulate information,documents that
describe the operation and use of the programs.

Explain:

1.1 THE NATURE OF SOFTWARE

Today, software takes on a dual role. It is a product, and at the same time, the vehi
cle for delivering a product. As a product, it delivers the computing potential em/

|
bnihr bodied by computer hardware or more broadly, by a network of computers that are
uuvet:‘cle accessible by local hardware. Whether it resides within a mobile phone or operates

sapoduct. Inside a mainframe computer, software is an information transformer—producing
managing, acquiring, modifying, displaying, or transmitting information that can be
as simple as a single bit or as complex as a multimedia presentation derived from|
data acquired from dozens of independent sources. As the vehicle used to deliver the
product, software acts as the basis for the control of the computer (operating sys-
tems), the communication of information (networks), and the creation and contro
of other programs (software tools and environments).

1.1.1 Defining Software

Today, most professionals and many members of the public at large feel that they
understand software. But do they?
A textbook description of software might take the following form:

Software is: (1) instructions (computer programs) that when executed provide desired
features, function, and performance; (2) data structures that enable the programs to ad-
equately manipulate information, and (3) descriptive information in both hard copy and
virtual forms that describes the operation and use of the programs.

Increased failure
rate due to side
effects
“Infant
% mortality”
Z 5
® |4
3 4
o =
- £ Change
Actual curve
Jealized curve
Time Time

b. What are the software myths governing the development of software? What is a well-engineered
software?
Scheme:3+2M

Solution:

SOFrTWARE IMIYTHS

Software myths—erroneous beliefs about software and the process that is used to
build it—can be traced to the earliest days of computing. Myths have a number of
attributes that make them insidious. For instance, they appear to be reasonable
statements of fact (sometimes containing elements of truth), they have an intuitive
feel, and they are often promulgated by experienced practitioners who “know the
score.”

Management myths. Managers with software responsibility, like managers in
most disciplines, are often under pressure to maintain budgets, keep schedules from
slipping, and improve quality. Like a drowning person who grasps at a straw, a soft-
ware manager often grasps at belief in a software myth, if that belief will lessen the
pressure (even temporarily).

Myth: We already have a book that’s full of standards and procedures for
building software. Won't that provide my people with everything they
need to know?

Reality: The book of standards may very well exist, but is it used? Are soft-
ware practitioners aware of its existence? Does it reflect modern
software engineering practice? Is it complete? Is it adaptable? Is it
streamlined to improve time-to-delivery while still maintaining a
focus on quality? In many cases, the answer to all of these questions
is "no.”

Myth: If we get behind schedule, we can add more programmers and caltch up
(sometimes called the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufactur-
ing. In the words of Brooks [Bro95]: “adding people to a late soft-
ware project makes it later.” At first, this statement may seem
counterintuitive. However, as new people are added, people who
were working must spend time educating the newcomers, thereby
reducing the amount of time spent on productive development
effort. People can be added but only in a planned and well-
coordinated manner.

Customer myths. A customer who requests computer software may be a person
at the next desk, a technical group down the hall, the marketing/sales department,
or an outside company that has requested software under contract. In many cases,
the customer believes myths about software because software managers and prac-
titioners do little to correct misinformation. Myths lead to false expectations (by the
customer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing
programs—we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is
not always possible, an ambiguous “statement of objectives” is a
recipe for disaster. Unambiguous requirements (usually derived

Practitioner’s myths. Myths that are still believed by software practitioners have
been fostered by over 50 years of programming culture. During the early days, pro-

gramming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that “the sooner you begin ‘writing code,’ the
longer it'll take you to get done.” Industry data indicate that between
60 and 80 percent of all effort expended on software will be ex-

pended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms
can be applied from the inception of a project—the technical review.
Software reviews (described in Chapter 15) are a “quality filter” that
have been found to be more effective than testing for finding ¢

classes of software defects.

a. Compare waterfall model with other similar models.
Scheme:3+2M

(6]

Co1l

L2

2.3.1 The Waterfall Model

There are times when the requirements for a problem are well understood—when
work flows from communication through deployment in a reasonably linear fash-
ion. This situation is sometimes encountered when well-defined adaptations or en-
hancements to an existing system must be made (e.g., an adaptation to accounting
software that has been mandated because of changes to government regulations). It
may also occur in a limited number of new development efforts, but only when
requirements are well defined and reasonably stable.

The walerfall model, sometimes called the classic life cycle, suggests a systematic,
sequential approach® to software development that begins with customer specifica-
tion of requirements and progresses through planning, modeling, construction, and
deployment, culminating in ongoing support of the completed software (Figure 2.3).

A variation in the representation of the waterfall model is called the V-model.
Represented in Figure 2.4, the V-model [Buc99] depicts the relationship of quality

m The waterfall model

—*| Communication

=

et inifiati Plannin .
e teing | || iy [Modeling |
= g e scheduling analysis nstruction § . Deployment |
wacki design code }
racking test delwer?r
suppor
feedback

V-mode‘

An extension of the waterfall model that emphasizes testing at each stage, making it
more adaptable to changes than the traditional waterfall model. &

Prototype model

Ideal for projects with unclear or changing requirements, while the waterfall model is
better for projects with well-defined requirements. @

Spiral model

A flexible methodology that emphasizes risk analysis and management, making it
suitable for large, complex, and long-term projects. @

b. Define task, activity, and milestone. Write a note on software components and software

applications.

Scheme:3+2M

A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that
produces a tangible outcome.

An activity strives to achieve a broad objective (e.g., communication with stakeholders)
and is applied regardless of the application domain, size of the project, complexity of
the effort, or degree of rigor with which software engineering is to be applied.

T ———
Process Fra mework

Umbrella activities

framework activity # 1

software engineering acfion #1.1

work fasks

work products

quality assurance points
project milestones

Task sefs

software engineering action #1.k

work fasks

Task sefs work products

quality assurance points
project milestones

framework activity # n

software engineering action #n.1

work lasks

work products

quality assurance points
project milestones

Task sets

software engineering action #n.m

work tasks

Task sefs work products

quality assurance points
project milestones

a. Explain the prototype and incremental development process with a neat diagram.

Prototyping. Often, a customer defines a set of general objectives for software,
but does not identify detailed requirements for functions and features. In other
cases, the developer may be unsure of the efficiency of an algorithm, the adapt-
ability of an operating system, or the form that human-machine interaction should
take. In these, and many other situations, a protolyping paradigm may offer the best

approach.

Although prototyping can be used as a stand-alone process model, it is more com-
monly used as a technique that can be implemented within the context of any one
of the process models noted in this chapter. Regardless of the manner in which it is
applied, the prototyping paradigm assists you and other stakeholders o better

understand what is to be built when requirements are fuzzy.

/J

Quick plan
Communication \
\ Modeling
Quick design
Deployment
Delivery c -
& Feadback UFon struction

pratatype

(¢,]

Co1

L3

2.3.2 Incremental Process Models

There are many situations in which initial software requirements are reasonably well
defined, but the overall scope of the development effort precludes a purely linear
process. In addition, there may be a compelling need to provide a limited set of soft-
ware functionality to users quickly and then refine and expand on that functionality
in later software releases. In such cases, you can choose a process model that is
designed to produce the software in increments.

The incremental model combines elements of linear and parallel process flows
discussed in Section 2.1. Referring to Figure 2.5, the incremental model applies linear
| sequencesin a staggered fashion as calendar time progresses. Each linear sequence

produces deliverable “increments” of the software [McD93] in a manner that is sim-
ilar to the increments produced by an evolutionary process flow (Section 2.3.3).

|:| Communication

|:| Planning

D Modeling [analysis, design)
increment & n
|:| Construction |code, test)
D Dep|c|ymen'| |c|a|i\.rary, feedback] DDD-D—D
.. delivery of
incremeant # 2 [] nth increment

D_DDDD delivery of
increment # 1 2nd increment
D_DDD—D delivery of
15t increment

Project Calendar Time

Software Functionality and Features

b. Mention the benefits of these models compared to the V model using suitable diagrams. Point out
at least two differences between them.
The V-model provides a way of visualizing how verification and validation actions are
applied to earlier engineering work. The waterfall model is the oldest paradigm for
software engineering. However, over the past three decades, criticism of this process
model has caused even ardent supporters to question its efficacy [Han95]. Among the
problems that are sometimes encountered when the waterfall model is applied are: 1.
Real projects rarely follow the sequential flow that the model proposes. Although the
linear model can accommodate iteration, it does so indirectly. As a result, changes can
cause confusion as the project team proceeds.lIt is often difficult for the customer to
state all requirements explicitly. The waterfall model requires this and has difficulty
accommodating the natural uncertainty that exists at the beginning of many projects.
3. The customer must have patience. A working version of the program(s) will not be
available until late in the project time span. A major blunder, if undetected until the
working program is reviewed, can be disastrous.

\ 4

Requirements Accepfance
modeling testing

N T

Architectural System
design testing

\\7_

Compenent Infegration
design testing

\~_ 7

Code Unit
generation festing

Executable

software

a. What is requirement validation? Explain different types of checks carried out during the process.

Validation. The work products produced as a consequence of requirements engi-
neering are assessed for quality during a validation step. Requirements validation
examines the specification® to ensure that all software requirements have been

stated unambiguously; that inconsistencies, omissions, and errors have been
detected and corrected; and that the work products conform to the standards estab-
lished for the process, the project, and the product.

The primary requirements validation mechanism is the technical review (Chap-
ter 15). The review team that validates requirements includes software engineers,
customers, users, and other stakeholders who examine the specification looking
for errors in content or interpretation, areas where clarification may be required,
missing information, inconsistencies (a major problem when large products or
systems are engineered), conflicting requirements, or unrealistic (unachievable)
requirements.

b. Explain the process of requirement negotiation with an example.
_NEGOTIATING REQUIREMENTS

In an ideal requirements engineering context, the inception, elicitation, and elabo-
ration tasks determine customer requirements in sufficient detail to proceed to sub-
sequent software engineering activities. Unfortunately, this rarely happens. In reality,
you may have to enter into a negotiation with one or more stakeholders. In most
cases, stakeholders are asked to balance functionality, performance, and other prod-
uct or system characteristics against cost and time-to-market. The intent of this
negotiation is to develop a project plan that meets stakeholder needs while at the

(6]

Co2

L2

same time reflecting the real-world constraints (e.g., time, people, budget) that have
been placed on the software team.

The best negotiations strive for a "win-win” result.?” That is, stakeholders win by
getting the system or product that satisfies the majority of their needs and you (as a
member of the software team) win by working to realistic and achievable budgets
and deadlines.

Boehm [Boe98] defines a set of negotiation activities at the beginning of each soft-
ware process iteration. Rather than a single customer communication activity, the
following activities are defined:

1. Identification of the system or subsystem'’s key stakeholders.
2. Determination of the stakeholders’ “win conditions.”
3. Negotiation of the stakeholders’ win conditions to reconcile them into a set

of win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which becomes
the key criterion for proceeding to subsequent software engineering activities.

a. Define and differentiate functional and non-functional requirements.

Difference between Functional & Non Functional Requirements

o
m Functional Requirements Non-Functional Requirements

1 Help to understand the functions of the ~ Help to understand the system's performance.
system.

2 Mandatory requirements. Not mandatory requirements.

3 They are easy to define. They are hard to define.

4 It concentrates on the user's requirement. It concentrates on the expectation of the user.

5 These requirements are specified by the These requirements are specified by the
user. software developers. architects and technical

persons.

b. What is a requirement specification? Explain various ways of writing requirement specifications.

Specification

In the context of computer-based systems (and software), the term
specification means different things to different people.

A specification can be a written document, a set of graphical models,
a formal mathematical model, a collection of usage scenarios, a
prototype, or any combination of these.

Some suggest that a “standard template” should be developed and
used for a specification, arguing that this leads to requirements that
are presented in a consistent and therefore more understandable
manner.

However, it is sometimes necessary to remain flexible when a
specification is to be developed.

(6]

COo2

L2

For large systems, a written document, combining natural
language descriptions and graphical models may be the best
approach.

However, usage scenarios may be all that are required for smaller
products or systems that reside within well-understood technical
environments.

Draw the use case diagram, activity diagram and sequence diagram for the following case study:
A Modern Bazar Supermarket sells books and CDs using Online shopping. The customer adds items
to the shopping cart. The customer may remove items or go to the checkout to make purchases at
any time. The customer receives the purchased items by choosing a payment method. A sales
employee at modern bazaar supermarket gets the order and purchase confirmation from the system
and sends the electronic order to the warehouse. The warehouse employee updates the order status.
The customer may check the order status.

Use Case Diagram — 4 Marks
Activity Diagram — 3 Marks

Sequence Diagram — 3 Marks

10

COo2

L3

