USN						
CDIV						

-				assessment res			•- ·		1	
Sub:	Theory of Co	mputation				Sub Code:	BCS503	Branch:	IS	SE
Date:	11/11/2024	Duration:	90 min's	Max Marks:	50	Sem/Sec:	V / A,	, B, C	(DBE
		Ans	wer any FIV	/E FULL Quest	tions			MA KS		RBT
1 a)		juage to des *ab*a(a+b)*	ign a DFA t	o accept all the	follo	ving languag	es:	10N	I CO1	L3
	ii. L={w	ı ;where w r	mod 3 =0 wl	here $\sum = \{a\}$, i.e.	{a ³ⁿ	n >= 0}}				
	iii. L= {	input alphab	oets ∑ = {0, 1	} , L is the set o	f all s	rings starting	g with 00}			
2 a)	U U		0	A into its equiva	alent	DFA.		10N	1 CO1	L3
	Convert the s		$\frac{\epsilon}{q_1}$	$\rightarrow $	2 (92	3				
	Define the follo (i) Alphabet (ii			iv) Language				6M	CO1	L1
	(/ 1)	ng lemma of	· · ·	guages (Prove 1	angu	age not to be	regular) and	4M	CO1	L2

Internal Assessment Test 1 – November 2024

UCN					
USIN					
1					

Internal Assessment Test 1 – November 2024

Sub:	Theory of Co	omputation				Sub Code:	BCS503	Bra nch :	IS	SE
Date:	11/11/2024	Duration:	90 min's	Max Marks:	50	Sem/Sec :	V / A, B, C		С	BE
		An	swer any FI	VE FULL Que	stions	<u>.</u>		MA RKS	СО	RBT
1 a)	 1 a) Use below language to design a DFA to accept all the following languages: i. L= b*ab*a(a+b)* ii. L={w ;where w mod 3 =0 where ∑ ={a}, i.e. {a³ⁿ n >= 0}} iii. L= { input alphabets ∑ = {0, 1} , L is the set of all strings starting with 00} 					_	10M	CO1	L3	
2 a)	2 a) Use given NFA and Convert given NFA into its equivalent DFA. Convert the given NFA into its equivalent DFA. 10M CO					CO1	L3			
3 a) Define the following with an example: (i) Alphabet (ii) String (iii) Symbol (iv) Language				6M	CO1	L1				
3 b) Explain Pumping lemma of regular languages (Prove language not to be regular) and explain using example.					4M	CO1	L2			
	Explain and M	i	given DFA:					10M	CO2	L2

5 a) Use the following NFA with ε-transitions. Construct an equivalent DFA. HERE epsilon is shown with(lambda symbol)	10M	CO2	L3
6 a) Explain and construct a DFA over input={a,b} where no. of a's are divisible by 3 and no. of b's are divisible by 3.	5M	CO1	L2
6 b) Explain the properties of Regular languages along with examples.	5M	CO2	L2

Faculty Signature

CCI Signature

HOD Signature

4 a) Explain and Minimize the given DFA:	10M	CO2	L2
a q1 b q2 b d2 b d4 b			
5 a) Use the following NFA with ε-transitions. Construct an equivalent DFA. HERE epsilon is shown with(lambda symbol)	10M	CO2	L3
q_{2} a q_{3} q_{7} q_{7} q_{8} q_{9} q_{9}			
6 a) Explain and construct a DFA over input={a,b} where no. of a's are divisible by 3 and no. of b's are divisible by 3.	5M	CO1	L2
6 b) Explain the properties of Regular languages alongwith examples.	5M	CO2	L2

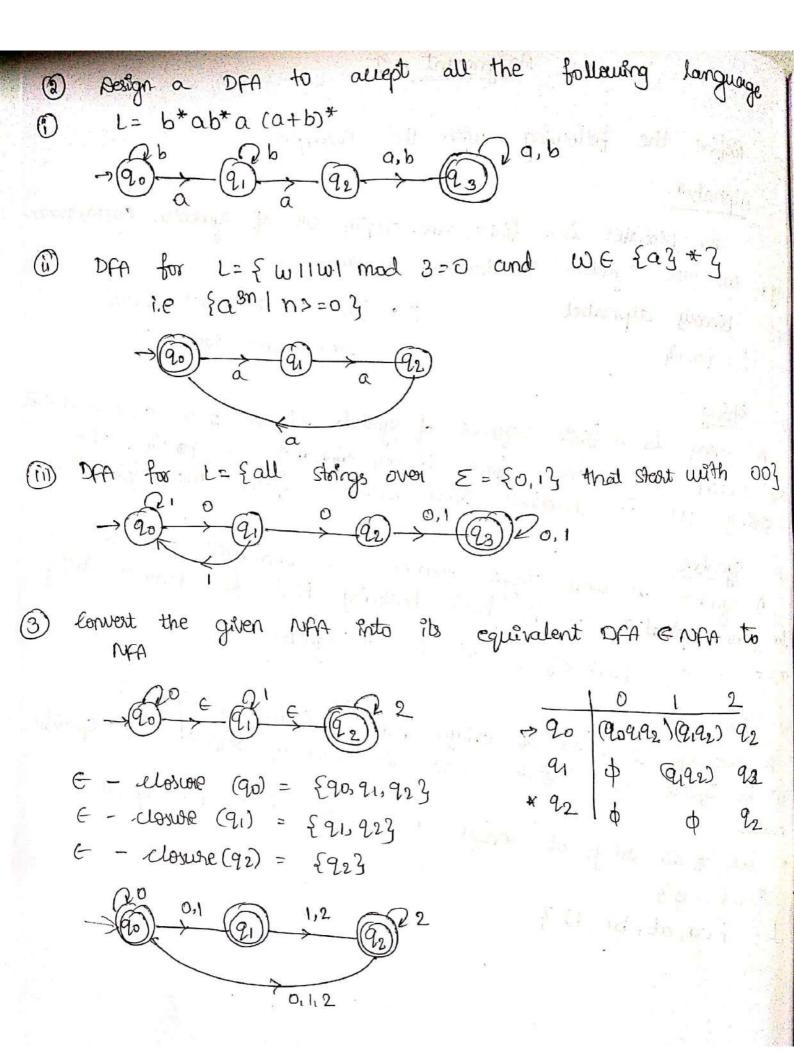
Faculty Signature

CCI Signature

HOD Signature

O Define the following with the examples. (1) Alphabet

An Alphabet is a finite, non-empily set of symbols. Conventiona-.lly, we use symbol Ξ for an alphabet. ex.:- broand alphabet $\Xi = \{a, b, \dots, z\}$ set of all $\Xi = \{0, 1\}$ Lower case letters.


ii) String

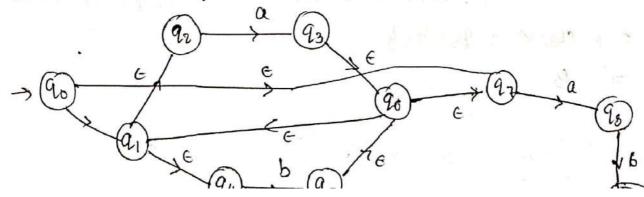
A string is a finite sequence of symbols choosen from some alphabet ex: 01101 is a string from binably alphabet $\mathcal{E} = \{0, 1\}$. the string 111 is another string choosen from this alphabet.

(iii) <u>Symbol</u> is any single element on chooseter that belongs A symbol is any single element on chooseter that belongs to an alphabet. It is basic building block for forming strings. ex:- $\Sigma = \{a, b, c\}$, "a" is a symbol.

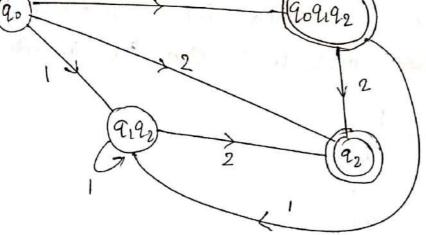
(iv) <u>Language</u> is a set of strings formed from an alphabet. It A language is a set of strings formed from an alphabet. It can be finite or infinite and is resually defined by specific rules. ex:- set of all strings of length 2 formed from the alphabet $\mathcal{E} = \{a, b\}$

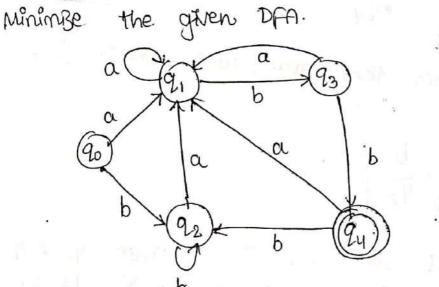
 $l = \{aa, ab, ba, bb\}$

steps: set 2 has no similar notices so set 2 will be the same, only replacing 92 by 20. $\frac{a}{\times 94} = \frac{b}{91} = \frac{b}{90}$


73.01 F ... 6

steps: New combine set! and set 2 as:


CL	b
21	90
91	93
91	+94
91	20
	91 91 91 91



(5) Consider the following NPA with a c transition construct an equivalent DFA

3

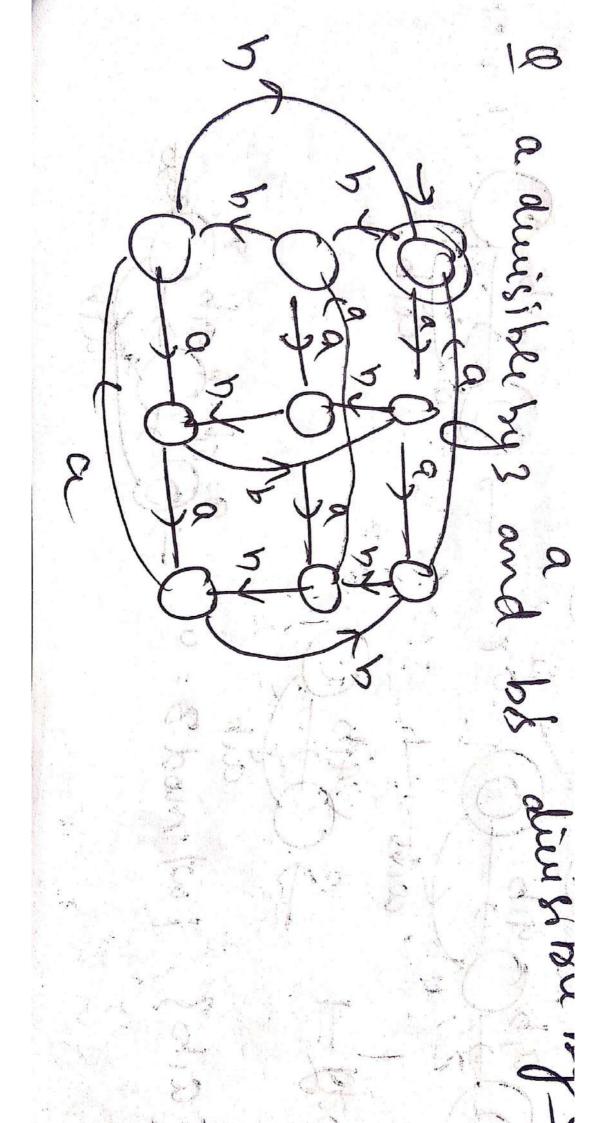
solution :

steps: In the given DFA, all states are reachable so no states need to be removed

step2: Draw the transition table for the steller.

	a .	b
90 .	21	92
91	21	23
92	91	9-2
93	91	* 94
- 94	21	9.2

Step3: Now divide rocus of transition table Rilo two sets as. 1. one set contains those rocus, which stood from non-Aral states


a	b
91	92
21	93
91	92
91	*94
	91 91

2. Another set contains these rours, which steerts from final states

stepy: In sett, rown and row3 are simpley since 90 & 92 toansit to the same state on a and b. so, skip 92 and replace 92 by 90 in rest.

⇒ Initial state ⇒ 90
E-chowere
$$(q_0) = \{q_0, q_1, q_2, q_4, q_7\} \Rightarrow lets (ay) & as (q_0)$$

 $S(A, 0) = E-chosume (S(A), a) \}$
 $= E-chosure (S(q_0, a)) US(q_1, a) U S(q_2, a) U(q_4, q)) U(q_4, q) U(q_6)$
 $= E-chosure \{q_0) \neq 0 q_{30} \oplus 0 q_{3} \}$
 $= E-chosure \{q_0) q_{0} Q_{3} U (E-chosure \{q_{3}\})$
 $= E-chosure \{q_{3} Q_{4}, q_{2}, q_{4}, q_{7} \} \cup \{q_{3} Q_{3} \}$
 $= E-chosure \{q_{3} Q_{4}, q_{2}, q_{4}, q_{7} \} \cup \{q_{3} Q_{3} \}$
 $= E-chosure \{S(q_{0}, b) \cup S(q_{1}, b) \cup S(q_{2}, b) \cup S(q_{4}, c) \oplus S(q_{4},$

$$\begin{split} & \mathcal{G}(\theta,b) = \mathcal{L} - \mathcal{L}_{buse} \{ \{ \delta(q_{1}, q_{2}, q_{3}, q_{4}, q_{6}, q_{4}, q_{5}, b \} \\ &= \mathcal{L}_{buse} \{ q_{5} \cup q_{4} \} \\ &= \mathcal{L}_{buse} \{ q_{5} \cup q_{4} - \mathcal{L}_{buse} \{ q_{4} \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7} \} \cup \{ q_{4} \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7} \} \cup \{ q_{4} \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7} \} \cup \{ q_{4} \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}, q_{7} \} \cup \{ q_{4} \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}, q_{7} \} , a \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}, q_{7} \} , a \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}, q_{7} \} , a \} \\ &= \{ q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}, q_{7} \} , a \} \\ &= \mathcal{L}_{buse} \{ \delta(q_{1}, q_{2}, q_{4}, q_{5}, q_{6}, q_{7}, q_{7} \} , a \} \\ &= \mathcal{L}_{buse} \{ q_{3} \cup q_{8} \} \\ &= \mathcal{L}_{buse} \{ q_{5} \cup q_{8} \} \\ &= \mathcal{L}_{buse} \{ q_{6} \cup q_{8} \} \\ &= \mathcal{L}_{buse} \{ q_{8} \cup q_{8} \} \\ &= \mathcal{L}_{bus$$

*) RL au closed under différence, *) RL an closed under reversal 1999 (*) LI-LZ = <u>[LINE</u>] Fegular (D) 21 MI Regular Regular 2) RECE DEAR T(L) L'and & Dase 100, 10 segular 3) Yu function L. Z > N* is called tromonorphism. RL an closed under chomonophism. eg $\xi = jaibj$ N = joiling homomosphie h(a) = 01 h = 0 what is homomosphie h(b) = 112 emoge 0 h(aba)h (01/1201) eghonionphic emerge g language. $l_1 = (a)^* b = (01)^* 112$. closed under reversal homomor 4) fl au phism. Q $\leq : 2011;2$ and $\leq :2a,bZ$. Define h by h(0) = a, h(1) = ab h(2) = ba. let, = 2ahaha?. let Li = 2 ab ab a? .. ab ab a dibaba 2 = 3022, 3

of kej Closure Peroperties chosur mea e result epy also bely RL, URL2 same s 10 1 also Regular Fi LULZ $= R_1, R_2$ 2 3 R TI. (L) 2 N) DFA -> DFA complement accept Li a Ĩ 5) L, NL2 -

+) Right Quotient let likts be langnages an the same alphabe Yeren the right quotient of L, Dit 2 is LILZ: Za: xyEL, for some yth23 $2f L_1 = \frac{2}{101,001,101,0001,1013}$ 7 A70 1112=26,0,1,00,113 *) Regular language are closed INIT (operation prefse. eg L=z a. ab, aabbs RA ABCD = SE, A, AB, ABC, ABCDS are closed andér Regular sets substitution. $L = a + b^{*} + (0)^{*} f(L) = 0^{*} + (0)^{*} f(L)$ z = zaibz. $f(a) = 0^{*}$ $f(b) = D1^{*}$ Regula