
USN											

Internal Assessment Test 1 – Nov 2024 Solution and scheme

Sub:	Artificial Inte	elligence				Sub Code:	BCS515B	Branch:	CSF	E	
Date:	11/11/2024	4 Duration: 90 mins Max Mark				Sem/Sec:	V/A	A,B&C		OI	BE
		A	nswer any FI	VE FULL Qu	estions	1		М	ARK S	CO	RBT
1	a. Discuss the four categories used to define artificial intelligence. Listing Four categories (4) Explanation (2)									CO1	2
	Thinking H "The exciting ers think full and liter "[The autor associate w such as dec ing, learning	ng new effor . <i>machines</i> ral sense." (mation of] ith human cision-makin	with minds Haugeland activities thinking, ac ng, probler	that we ctivities n solv-	"The s use of (Charn "The s it poss	computation iak and Mc tudy of the c	dly tal faculties th nal models." Dermott, 198 computations tive, reason, a	5) that n			
	Acting Hur "The art of form functi when perfo 1990) "The study things at wh better." (Ric	f creating n ons that re rmed by po of how to n tich, at the n	equire intel eople." (Ku nake compu noment, peo	ligence arzweil, aters do	of the design of intelligent agents." (P et al., 1998) "AI is concerned with intelligent						
	Figure 1.1 Some definitions of artificial intelligence, organized into four categories. b. Discuss the Turing test approach to test whether a computer has artificial intelligence Explanation (4)							ries.	4	CO1	2
	A computer passes the test if a human interrogator, after posing some written questi cannot tell whether the written responses co										
	from a person or from a computer The computer would need to possess the following capabilities:										

	Problem-Solving Agent Well-defined problems			
	 A problem can be defined by five components: initial state, actions, transition model, goal test, path cost. 			
	INITIAL STATE: The initial state that the agent starts in.		l	
	ACTIONS: A description of the possible actions available to the agent.			
	• Given a particular state s, ACTIONS(s) returns the set of actions that can be executed in s.			
	• Each of these actions is applicable in s.			
	TRANSITION MODEL: A description of what each action does is known as the transition mod			
	• A function RESULT(s,a) that returns the state that results from doing action a in state s.			
	• The term successor to refer to any state reachable from a given state by a single			
	• The state space of the problem is the set of all states reachable from the <i>initial state</i> by any seque of actions.			
	• The state space forms a graph in which the nodes are states and the links between nodes are act		l	
	• A path in the state space is a sequence of states connected by a sequence of actions.			
	Problem-Solving Agent <i>Well-defined problems</i>			
	GOAL TEST: The goal test determines whether a given state is a goal state.			
	PATH COST: A path cost function that assigns a numeric cost to each path.			
	• The problem-solving agent chooses a cost function that reflects its own performance measure.			
	• The cost of a path can be described as the sum of the costs of the individual actions along the pa			
	• The step cost of taking action a in state s to reach state s' is denoted by c(s, a, s').		l	
	• A SOLUTION to a problem is an action sequence that leads from the <i>initial state</i> to a <i>goal state</i>			
	 Solution quality is measured by the path cost function, and an OPTIMAL SOLUTION has the lowest path cost among all solutions. 			
3	What are the possible states of a vacuum world problem that has two rooms. Draw	10	CO1	1
	the state space for the problem.			
	State space Diagram (10)			

4 a. Discuss any two applications of AI. Any two applications with explanation (2+2)	4	CO1	3
 b. Explain the following terms in the context of searching for solutions Search tree (1) A solution is an action sequence, so search algorithms work by considering various possible action sequences. The possible action sequences starting at the initial state form a search tree with the initial state at the root The branches are actions and the nodes correspond to states in the state space of the problem. ii) Frontier (also known as open list) with example (2) We reach a state when we identify a path from the start state to it. But, we say that we expanded it if we had followed all its outward edges and reached all its children. So, we can also think of a search as a sequence of expansions, and we first have to reach a state before expanding it. Frontier is the reached but unexpanded states because we can expand only them 	6	CO1	2
 iii) Loopy path with example (2) loopy path: path from Arad to Sibiu and back to Arad again! We say that In(Arad) is a repeated state in the search tree, generated in this case by a loopy path 			
5 a. Discuss the difference between uninformed searches and heuristic searches? difference (2 ×2 =4)	[4+6]	CO1	2

	Blind	/s. Heui	ristic	Strateg	ies				
	-			Judg					
	no availa	additional ble in prot	infor plem de	finition	except				
	■ Dist		oal state	e from a no	on goal				
	 Heur wheth 	i <mark>stic (</mark> or in	on goa) strategies al state is					
	Explain greedy bes		rith an exa	mple.					
	blanation and exan Greedy best-first s grounds that this is	earch expands	the node th	at is closest to t	he goal, on the				
	likely to lead to a s		/.						
	• Greedy search ex	pands the node	that appea	ars to be closest	to goal				
	• Greedy best-first	best-first search evaluates nodes by using just the heuristic function.							
			function h	(n) as the evalu	ation function f(n) (
	that is $f(n) = h(n)$		11 1	·	1 / 1 T	10	CO1		
from exp ano	n Bangalore with n anded to obtain the	ninimal cost. C solution. Cost ge cost in the g	learly show (distance) graph. Use	w the sequence i of traveling fro		10			
	Bar	galore Mumbai	500 Ahr 950	nedabad 650 aipur					
	(Chenr	iai 600 1500 Hyderabad	<u>D</u>	- 450 Þelhi					
	Select s	traight line distance sh	own in the table	e below as heuristic fun	ction value				
	Location	Straight line distance to Jaipur	Location	Straight line distance to Jaipur					
	Bangalore	1200	Delhi	300					
	Chennai	1100	Ahmedabad	400	-				
	Mumbai	700	Kolkata	1000	-				
	Hyderabad 800								
So] (9+	lution of a* search	with shortest	Figure 1 path						
[V [_]	± <i>j</i>						1		
	ortest path =2100						1 1		

	CO-PO and CO-PSO Mapping																		
Course Outcomes		Blo oms Lev el	Mo dule s cove red	Р О 1	Р О 2	Р О 3	Р О 4	Р О 5	Р О 6	0	P O 8	Р О 9	P O 1 0	P O 1 1		P S O 1	P S O 2	P S O 3	P S O 4
CO1	Explain the architecture and components of intelligent agents, including their interaction with the AI environment.	L2	M1	3	3	2	3	3	1	-	-	1	-	-	1	-	-	-	2
CO2	Apply problem-solving agents and various search strategies to solve a given problem.	L3	M2	3	3	2	3	3	1	-	-	1	-	-	1	-	-	-	2
CO3	Illustrate logical reasoning and knowledge representation using propositional and first-order logic.	L3	M3	3	3	2	3	3	1	-	-	1	-	-	1	-	-	-	2
CO4	Demonstrate proficiency in representing knowledge and solving problems using first-order logic.	L3	M4	3	3	2	3	3	1	-	_	1	-	-	1	_	-	-	2
CO5	Describe classical planning in the context of artificial intelligence, including its goals, constraints, and applications in problem-solving.	L3	M5	3	3	2	3	3	1	-	-	1	-	-	1	-	-	-	2

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

DI	C	ORRELATION									
F F	PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)										
PO1	Engineering knowledge PO7 Environment and sustainability			0	No Correlation						
PO2	Problem analysis	PO8	Ethics	1	Slight/Low						
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/ Medium						
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High						
PO5	Modern tool usage	PO11	Project management and finance								
PO6	The Engineer and society	PO12	Life-long learning								