
USN

Internal Assessment Test 1 – OCT. 2024

Sub: BIG DATA ANALYTICS Sub
Code:

21CS71 Branch: CSE

Date: 15/10/2024 Duration: 90 mins Max Marks: 50 Sem /
Sec: 7/A,B,C OBE

Answer any FIVE FULL Questions MAR
KS

CO RBT

1 a) Define Big Data. Consider the usage examples of Big data for a Car
company. Assume that company manufactures five models of cars, and
each model is available in five colours and five shades.The Company
collects inputs from customers and sales centres and inputs of component
malfunctions from service centers for different models.The company also
uses social media inputs. Explain 5Vs characteristics in this company’s
data.
Solution :

Big Data refers to extremely large and complex datasets generated from
various sources that cannot be easily processed using traditional data
processing tools. These datasets often require advanced technologies,
analytics, and techniques to capture, store, manage, and analyze for valuable
insights.

For a car company that manufactures multiple models in various colors and
shades and collects customer feedback, sales data, component malfunction
data from service centers, and social media inputs, the data it handles
exemplifies the 5Vs characteristics of Big Data:

1. Volume:

 Definition: Volume refers to the massive amount of data generated
and stored by an organization.

 Application in the Company: The car company generates a large
volume of data from numerous sources, including customer
feedback, sales center inputs, service center records, and social
media. This high volume of data comes from the diversity of car
models, colors, and shades offered, as well as from various
locations, creating a huge dataset that requires significant storage
and processing capacity.

2. Velocity:

 Definition: Velocity is the speed at which data is generated,
collected, and processed.

 Application in the Company: Data is continuously generated from
multiple streams, such as real-time sales data, live social media
inputs, and instant service center reports on malfunctions. For
example, customer reviews on social media may be posted anytime,
requiring the company to capture and analyze feedback quickly to
respond to potential issues or trends in customer preferences.

5 CO1 L2

3. Variety:

 Definition: Variety refers to the diversity in data types and sources.
 Application in the Company: The company’s data comes in

various formats, such as structured data from sales centers
(transactional sales records), unstructured data from social media
comments (text), and semi-structured data from service reports (logs
of malfunctions). This mix of data types from different sources,
including text, images, and numerical data, adds complexity to data
analysis.

4. Veracity:

 Definition: Veracity pertains to the accuracy and reliability of data.
 Application in the Company: Data veracity is crucial for the car

company because insights based on inaccurate data can lead to poor
decisions. For example, false customer complaints or incorrect
malfunction reports may mislead the company, so it must filter and
validate data from multiple sources to ensure it reflects accurate and
actionable insights.

5. Value:

 Definition: Value represents the actionable insights and benefits
gained from analyzing Big Data.

 Application in the Company: The primary purpose of collecting
and analyzing this extensive data is to derive value, such as
improving product quality, enhancing customer satisfaction, and
boosting sales. Insights from customer feedback can inform future
designs, while malfunction reports help improve service and reduce
warranty costs, ultimately adding value to the company’s offerings
and customer experience.

b) How do you classify data as structured, semi-structured and
unstructured?
Solution:

1. Structured Data

 Definition: Structured data is highly organized and follows a
specific format or schema. It is often stored in databases where it
can be easily accessed, queried, and analyzed.

 Characteristics:
o Stored in rows and columns (e.g., in relational databases like

SQL).
o Follows a defined schema, making it predictable and easy to

process.
o Usually quantitative data, like numbers, dates, and strings.

 Examples:

o Customer information in a CRM (Customer Relationship
Management) system.

o Sales transaction records with fields like customer ID,

5 CO1 L2

transaction date, and amount.
o Inventory databases with structured attributes like product

ID, name, and quantity.

2. Semi-Structured Data

 Definition: Semi-structured data has some organizational properties
but lacks a strict schema. It may have tags or markers to separate
elements and provide some structure, but it does not fit neatly into
rows and columns.

 Characteristics:

o Contains elements of both structured and unstructured data.
o Can be stored in non-relational or NoSQL databases (e.g.,

JSON, XML).
o Flexible in format, often with metadata or tags to provide

structure.

 Examples:

o JSON and XML files with nested elements and tags.
o Email messages, where each message has a structured header

(sender, recipient, timestamp) and an unstructured body.
o Sensor data from IoT devices, which may have some

consistent attributes but vary in their details and formats.

3. Unstructured Data

 Definition: Unstructured data lacks a predefined format or
organization and does not fit neatly into database tables. It is often
qualitative and requires advanced processing techniques, such as
Natural Language Processing (NLP), to analyze.

 Characteristics:

o No consistent format or structure.
o Often text-heavy, multimedia, or qualitative in nature.
o Requires specialized tools and techniques for processing and

analysis (e.g., AI and machine learning algorithms).

 Examples:

o Text documents (e.g., Word files, PDFs).
o Images, audio files, and videos.
o Social media posts, customer reviews, and emails where data

is free-form and varies in content.

2 a) Explain uses of massive parallel processing and cluster computing in Big
data Scenario.

Solution:

Massive Parallel Processing (MPP) and Cluster Computing are essential
technologies for handling Big Data due to their ability to process large
volumes of data quickly and efficiently. Here’s how each technology is

5 CO1 L2

used in a Big Data scenario:

1. Massive Parallel Processing (MPP)

 Definition: MPP refers to the use of multiple processors to execute
different parts of a data processing task simultaneously. Each
processor operates independently, handling a segment of the data in
parallel with other processors.

 Uses in Big Data:
o Data Analysis and Computation: MPP allows for large

datasets to be divided and processed concurrently, drastically
reducing the time required for data analysis. For example, an
MPP database could process billions of rows of data in a
fraction of the time compared to a traditional system.

o High-Speed Query Processing: MPP enables faster
execution of complex queries in Big Data environments,
such as business intelligence queries for real-time insights or
customer behavior analysis.

o Scalability for Large Data Volumes: MPP systems can
easily scale to handle larger data volumes by adding more
processors or nodes. This scalability is crucial in Big Data
scenarios, where data volume continually grows.

o Examples: Technologies like Amazon Redshift, Google
BigQuery, and Teradata are MPP databases that can handle
large-scale data analysis by distributing queries across
multiple processors.

2. Cluster Computing

 Definition: Cluster computing involves connecting multiple
computers (nodes) to work together as a single system. These nodes
share tasks and resources, creating a powerful computing cluster.

 Uses in Big Data:
o Distributed Data Storage and Processing: Cluster

computing enables the storage and processing of large
datasets across multiple machines, essential for Big Data.
Technologies like Apache Hadoop and Apache Spark split
data across nodes, which allows for distributed data storage
and processing.

o Fault Tolerance and Reliability: In cluster computing, if
one node fails, the data and tasks are automatically
redirected to other nodes, ensuring that operations can
continue without interruption. This reliability is critical in
Big Data environments where continuous data processing is
required.

o Cost-Effective Scalability: Cluster computing allows
organizations to add inexpensive commodity hardware to
expand the system as data grows, making it a cost-effective
solution for Big Data processing.

o Examples: Apache Hadoop’s HDFS (Hadoop Distributed
File System) and MapReduce leverage cluster computing to
process and store large data volumes, while Apache Spark
enables high-speed data processing across clusters for tasks

like data transformation and machine learning.

b) What is analytics scalability to Big Data? Also explain horizontal
scalability and vertical scalability.

Solution:

1. Horizontal Scalability (Scale-Out)

 Definition: Horizontal scalability, or scale-out, refers to expanding a
system’s capacity by adding more nodes (machines or servers) to the
network.

 How it Works: In a horizontally scalable system, data and tasks are
distributed across multiple machines. When demand increases,
additional machines are added to share the workload, allowing the
system to handle more data and more users.

 Benefits:
o Cost-Effectiveness: It can be less expensive to add

commodity servers than to invest in a high-powered single
machine.

o Fault Tolerance: Horizontal scalability allows systems to
continue working even if one node fails, as tasks can be
distributed to other nodes.

o Flexibility: More machines can be added incrementally as
needed, making it easier to adjust capacity based on demand.

 Examples: Big Data frameworks like Apache Hadoop and Apache
Spark are designed for horizontal scalability, enabling distributed
data storage and processing across many nodes in a cluster.

2. Vertical Scalability (Scale-Up)

 Definition: Vertical scalability, or scale-up, involves increasing the
capacity of a single machine by adding more resources such as CPU,
RAM, and storage.

 How it Works: In a vertically scalable system, performance
improves by upgrading or adding more powerful components to a
single machine rather than distributing tasks across multiple
machines.

 Benefits:
o Simplicity: Vertical scalability requires less configuration

and management than a distributed system.
o High Performance for Specific Tasks: For certain types of

tasks that are not easily distributed, a high-powered single
machine can be more efficient.

 Limitations:

o Cost: Upgrading individual machines can become expensive,
particularly as higher performance hardware becomes costly.

o Hardware Limitations: There is a practical limit to how
much you can upgrade a single machine, which can constrain
scalability.

 Examples: Traditional databases like MySQL or Oracle can be
vertically scaled by adding more resources to a single server to

5 CO1 L2

improve performance.

Summary

 Horizontal scalability is ideal for distributed computing
environments, where data processing can be split across multiple
nodes.

 Vertical scalability is often used in environments that benefit from
single-machine processing, where adding resources to one server
may yield sufficient performance improvement.

3 a) Differentiate i) OLTP Vs OLAP ii) SQL Vs NoSQL
Solution : (any 2 points- 2 marks for each)

OLTP (Online Transaction Processing) and OLAP (Online Analytical
Processing) are two types of data processing systems, each designed for
distinct purposes in the data management ecosystem.

ii)

4 CO1 L2

b) Describe ways of usages of Big Data analytics in health care systems and
medicine

Solution:

Big Data analytics is transforming healthcare and medicine by leveraging
vast amounts of data to improve patient care, streamline operations, and
advance medical research. Here are some key applications of Big Data
analytics in healthcare:

1. Predictive Analytics for Patient Care

 Usage: Predictive models use historical patient data to forecast

6 CO1 L2

potential health risks and outcomes. For example, predictive
analytics can help identify patients at high risk of chronic diseases
like diabetes or cardiovascular diseases.

 Impact: Early intervention and preventive care can be applied to
high-risk patients, reducing hospitalizations, improving outcomes,
and lowering healthcare costs.

2. Personalized Medicine and Treatment Plans

 Usage: Big Data enables the analysis of genetic, environmental, and
lifestyle data to customize treatment plans. For instance, genomic
data can be analyzed to determine a patient's response to certain
medications.

 Impact: Personalized treatments are more effective, reducing side
effects and improving patient adherence and recovery times.

3. Improving Diagnosis Accuracy

 Usage: Machine learning models trained on large datasets of
medical images and patient records assist in diagnosing conditions
such as cancer, cardiovascular disease, and neurological disorders.

 Impact: Early and accurate diagnoses can lead to timely treatment
and better patient outcomes, with reduced chances of misdiagnosis.

4. Operational Efficiency in Healthcare Facilities

 Usage: Big Data analytics helps optimize resource allocation in
hospitals, such as managing staff schedules, predicting patient
admission rates, and reducing wait times.

 Impact: Improved operational efficiency enhances patient
experience, reduces healthcare costs, and ensures better use of
medical resources.

5. Remote Monitoring and Telemedicine

 Usage: Wearable devices and remote monitoring tools generate
massive amounts of real-time patient data. Big Data analytics
processes this data to monitor vital signs, detect anomalies, and
provide insights to physicians.

 Impact: Remote monitoring improves chronic disease management,
enables timely interventions, and makes healthcare accessible to
people in remote or underserved areas.

6. Drug Discovery and Development

 Usage: Big Data is used to analyze biological data, clinical trial
results, and existing pharmaceutical data to identify potential drug
candidates. It also aids in repurposing existing drugs for new
treatments.

 Impact: Reduces the time and cost involved in drug development,
accelerating the discovery of new treatments for diseases and
improving patient outcomes.

4 Define Big Data architecture. Draw five layers in architecture design and
explain functions in each layer.
Solution :

Big Data Architecture is a blueprint for managing and processing vast
amounts of data by integrating various components and tools into a
streamlined pipeline. It defines the framework for collecting, storing,
processing, analyzing, and visualizing data in a scalable and efficient
manner, often employing distributed computing technologies.

The typical Big Data architecture consists of five layers:

1. Data Ingestion Layer

 Function: This layer is responsible for collecting and importing data
from multiple data sources into the system. It gathers structured,
semi-structured, and unstructured data from diverse sources like
sensors, social media feeds, databases, and transactional systems.

 Technologies: Kafka, Apache Flume, Apache NiFi, Sqoop, and
real-time streaming tools.

 Purpose: Ensures that data flows efficiently into the architecture
from various sources, often at high velocity.

2. Data Storage Layer

 Function: This layer stores the raw ingested data in a scalable and
reliable format. The data may be stored as-is (raw data) or undergo
minor processing to prepare it for the next layers. Data storage
solutions are chosen based on factors like volume, variety, and
velocity of data.

 Technologies: HDFS, Amazon S3, NoSQL databases (e.g.,
Cassandra, MongoDB), or cloud-based storage solutions.

 Purpose: Provides storage that can scale horizontally and handle
large amounts of diverse data while ensuring data integrity and
reliability.

3. Data Processing Layer

 Function: This is the core of Big Data architecture, where raw data
is transformed, cleansed, enriched, and prepared for analysis. It
handles batch processing (for large datasets) and real-time
processing (for immediate insights). It prepares data for analytics,
aggregating, and summarizing it to make it meaningful.

 Technologies: Apache Spark, Hadoop MapReduce, Apache Storm,
Flink.

 Purpose: Enables efficient processing of data at scale, ensuring the
data is in a usable format for analytical purposes.

4. Data Analytics Layer

 Function: This layer is responsible for analyzing the processed data.
It uses advanced analytics, including machine learning, predictive

10 CO1 L1

analytics, and data mining, to extract actionable insights and identify
trends.

 Technologies: R, Python, TensorFlow, machine learning
frameworks, and specialized analytics platforms.

 Purpose: Provides meaningful insights, helps in making data-driven
decisions, and enables predictive analysis.

5. Data Visualization Layer

 Function: The final layer presents the analyzed data to end-users in
an understandable format. It allows users to interact with data
through visualizations, dashboards, and reports, often in real time.

 Technologies: Tableau, Power BI, QlikView, D3.js, Grafana.
 Purpose: Helps stakeholders and decision-makers understand the

data insights through interactive and user-friendly visual
representations.

Diagram

The architecture can be visualized with the five layers stacked from bottom
to top:

|----------------------------|

| Data Visualization | <-- Visualize insights,

dashboards, reports

|----------------------------|

| Data Analytics | <-- Analyze data, machine

learning, predictive models

|----------------------------|

| Data Processing | <-- Transform, clean, and

prepare data

|----------------------------|

| Data Storage | <-- Store raw and processed

data at scale

|----------------------------|

| Data Ingestion | <-- Collect data from various

sources

|----------------------------|

Each layer works together to enable efficient handling, processing, and
presentation of Big Data, allowing organizations to derive valuable insights
and make informed decisions.

5 List Hadoop Core Components and explain with appropriate diagram.
Solution:

Hadoop is a powerful framework for processing and storing large datasets
using distributed computing. The Hadoop ecosystem is built on several core
components that work together to provide scalable, fault-tolerant data
processing and storage solutions. The four main core components of
Hadoop are:

10 CO2 L1

1. Hadoop Distributed File System (HDFS)
2. MapReduce
3. YARN (Yet Another Resource Negotiator)
4. Hadoop Common

Below is an overview of each component with an appropriate diagram to
illustrate their interactions.

1. Hadoop Distributed File System (HDFS)

 Function: HDFS is Hadoop's primary storage system, designed to
store large volumes of data across multiple machines in a cluster. It
splits files into large blocks (usually 128 MB or 256 MB) and
distributes them across the cluster nodes, with each block replicated
on multiple nodes to ensure fault tolerance.

 Key Components:

o NameNode: Manages the metadata and directory structure of
the file system, overseeing which nodes hold data blocks.

o DataNode: Stores the actual data blocks and periodically
reports back to the NameNode.

 Purpose: HDFS provides reliable, scalable, and distributed storage,
making it ideal for handling big data.

2. MapReduce

 Function: MapReduce is Hadoop's processing engine that allows
parallel processing of large data sets across the Hadoop cluster. It
processes data in two phases:

o Map Phase: Divides tasks and processes each data block to
generate intermediate key-value pairs.

o Reduce Phase: Aggregates and summarizes the results from
the map phase to produce the final output.

 Purpose: MapReduce enables distributed data processing, ensuring
efficient and fault-tolerant computation over massive datasets.

3. YARN (Yet Another Resource Negotiator)

 Function: YARN is Hadoop's resource management layer, which
allocates system resources like CPU and memory to various
applications running in the Hadoop cluster. It manages and
schedules tasks for MapReduce and other frameworks (like Spark)
that run on Hadoop.

 Key Components:

o ResourceManager: Manages the allocation of resources
across applications.

o NodeManager: Manages resources at the node level,
reporting back to the ResourceManager.

 Purpose: YARN improves Hadoop’s scalability by decoupling
resource management and job scheduling, enabling more efficient
use of cluster resources.

4. Hadoop Common

 Function: Hadoop Common includes shared libraries and utilities
needed by other Hadoop components. It provides essential services
and configuration parameters for other modules in the Hadoop
ecosystem.

 Purpose: Ensures that all other Hadoop components can work
seamlessly together, offering a foundation for other tools in the
Hadoop ecosystem.

Diagram

Below is a simplified diagram representing the interaction among Hadoop
core components:

+-------------------------+

| Hadoop Common | <--- Core utilities and

libraries

+-------------------------+

|

+------------+------------+

| |

| |

v v

+---------+ +------------------+

| HDFS | | YARN | <--- Distributed

storage and resource management

+---------+ +------------------+

| NameNode| | ResourceManager |

| DataNode| | NodeManager |

+---------+ +------------------+

|

+------+------+

| MapReduce | <--- Data processing engine

+-------------+

| Map Phase |

| Reduce Phase|

+-------------+

Summary of Component Interactions

 HDFS provides distributed storage where data is stored as blocks
across nodes.

 MapReduce leverages the data stored in HDFS, using the
distributed nature of HDFS to perform parallel processing.

 YARN allocates and manages resources within the Hadoop cluster

to run processing jobs like MapReduce.
 Hadoop Common supports the entire ecosystem, offering essential

libraries and services for effective operation across all components.

Together, these components form a comprehensive framework for Big Data
storage, processing, and management, making Hadoop a powerful tool for
large-scale data handling.

6 a) How does MapReduce function as a programming model for distributed
computing?
Solution:

MapReduce is a programming model and processing framework designed to
efficiently process and generate large datasets across distributed clusters of
computers. It simplifies the complexities of parallel computing by providing
a high-level abstraction for developers. Here’s how MapReduce functions
as a programming model for distributed computing:

1. Basic Concept of MapReduce

The MapReduce model is based on two primary functions: Map and
Reduce. It operates in a distributed computing environment, breaking down
tasks into smaller sub-tasks that can be processed in parallel.

Map Function

 Input: The Map function takes a set of input key-value pairs.
 Processing: It processes each input pair to produce a set of

intermediate key-value pairs.
 Output: The output is a list of key-value pairs, which are often

emitted to a temporary storage area.

Reduce Function

 Input: The Reduce function receives the intermediate key-value
pairs generated by the Map function.

 Processing: It aggregates and processes these pairs based on their
keys.

 Output: The output is a smaller set of key-value pairs that represent
the final result of the computation.

2. Workflow of MapReduce

The MapReduce framework follows a systematic workflow, which includes
the following steps:

1. Input Splitting

 The input data is divided into smaller chunks called splits. Each split
is processed independently, enabling parallelism.

2. Mapping

5 CO2 L2

 Each split is processed by the Map function, which outputs
intermediate key-value pairs. This function is executed in parallel
across multiple nodes in the cluster.

3. Shuffling and Sorting

 The intermediate key-value pairs produced by the Map function are
shuffled and sorted by key. This process groups all values associated
with the same key together, preparing them for the Reduce phase.

4. Reducing

 The Reduce function processes the grouped intermediate key-value
pairs. It performs aggregation or other operations to produce the
final output for each key.

5. Output

 The final results from the Reduce phase are written to an output file
or database for further analysis or storage.

3. Key Features of MapReduce in Distributed Computing

MapReduce provides several features that facilitate distributed computing:

Scalability: The model can efficiently handle large datasets by
distributing the workload across many nodes in a cluster. As the
amount of data grows, additional nodes can be added to the cluster
to accommodate increased processing demands.

Fault Tolerance: If a node fails during processing, the MapReduce
framework can automatically reassign the failed task to another
node. This ensures that the overall computation continues without
significant interruption.

Data Locality: MapReduce optimizes performance by moving
computation closer to where the data is stored. This reduces data
transfer times across the network and enhances overall efficiency.

Simplified Programming Model: Developers can focus on writing
the Map and Reduce functions without needing to manage the
underlying complexity of distributed systems, such as load
balancing, resource management, and fault tolerance.

4. Example Use Case

An example use case for MapReduce is counting the occurrences of words
in a large collection of documents.

Map Function: The Map function reads each document and emits a

key-value pair for each word (key) along with the count (value) of 1.

Intermediate Output: For the input "Hello World," the output
would be:
(Hello, 1)

(World, 1)

Reduce Function: The Reduce function takes these key-value pairs
and aggregates the counts for each word.

Final Output: The final output would provide the total count of
occurrences for each word across all documents.

b) List the functions of YARN
Solution : (any 5 functions- 5 marks)

YARN (Yet Another Resource Negotiator) is a key component of the
Hadoop ecosystem that acts as the resource management layer for Hadoop.
It provides a framework for job scheduling and cluster resource
management, enabling multiple data processing engines to run and share the
same resources in a Hadoop cluster. Here are the main functions of YARN:

1. Resource Management

 Resource Allocation: YARN allocates cluster resources (CPU,
memory, disk) to various applications running on the Hadoop
cluster. It ensures that resources are utilized effectively and fairly
among different jobs.

 Resource Monitoring: YARN continuously monitors the resources
used by different applications and nodes in the cluster, maintaining
an overview of resource utilization.

2. Job Scheduling

 Application Scheduling: YARN schedules and manages jobs
submitted to the cluster. It determines when and how applications
should be run based on resource availability.

 Fair Scheduling: YARN can implement scheduling policies such as
fair scheduling, which ensures that all applications get an equitable
share of resources based on their requirements.

3. Fault Tolerance

 Node Failure Handling: YARN is designed to handle node failures
gracefully. If a node fails, YARN can restart the failed application
on another node, ensuring job completion without data loss.

 Rescheduling: In the event of a task failure, YARN reschedules
tasks on available nodes, maintaining the overall reliability of the
system.

5 CO2 L1

4. Multi-tenancy

 Support for Multiple Frameworks: YARN allows various
processing frameworks (such as MapReduce, Spark, and Tez) to run
on the same Hadoop cluster simultaneously. This multi-tenancy
enables efficient use of cluster resources and facilitates different
data processing workloads.

5. Dynamic Resource Allocation

 Resource Adjustment: YARN supports dynamic allocation of
resources during runtime, allowing applications to request additional
resources as needed. This adaptability helps optimize performance
based on changing workload demands.

6. Application Lifecycles Management

 Application Submission: YARN handles the submission and
tracking of applications in the cluster. It provides APIs for clients to
submit jobs, check status, and retrieve outputs.

 Application Coordination: YARN manages the execution of
applications by coordinating between different components and
handling the lifecycle of tasks within an application.

7. Security and Access Control

 Authentication and Authorization: YARN provides security
features to authenticate users and authorize access to resources. This
ensures that only authorized users can submit applications or access
certain resources.

8. Metrics and Monitoring

 Performance Metrics: YARN collects and exposes metrics related
to resource usage, application performance, and system health.
These metrics can be monitored for performance tuning and
troubleshooting.

All the best
CI CCI HOD

CO POMapping

Course Outcomes

M
od

ul
es

co
ve

re
d

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

PS
O
1

PS
O
2

PS
O
3

PS
O
4

CO1

Understand
fundamentals
of Big Data
analytics.

1 3 0 2 2 3 0 0 0 0 0 0 0 0 0 0 3

CO2

Investigate
Hadoop
framework and
Hadoop
Distributed File
system.

1,2 2 3 2 3 3 0 0 0 0 0 0 0 0 2 0 3

CO3

Illustrate the
concepts of No
SQL using
MongoDB and
Cassandra for Big
Data.

3 2 2 3 3 3 0 0 0 0 0 0 0 0 2 0 3

CO4

Demonstrate the
Map Reduce
programming
model to process
the big data
along
with Hadoop
tools.

2,3,4 3 3 3 2 3 0 0 0 0 0 0 0 0 2 0 3

CO5

Use Machine
Learning
algorithms for
real world big
data.

5 3 3 3 3 3 0 0 0 0 0 0 0 0 2 0 3

CO6

Analyze web
contents and
Social Networks
to provide
analytics with
relevant
visualization
tools.

5 3 3 2 2 3 0 0 0 0 0 0 0 0 2 0 3

COGNITIVE
LEVEL REVISED BLOOMS TAXONOMY KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5 Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) CORRELATION
LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation
PO2 Problem analysis PO8 Ethics 1 Slight/Low
PO3 Design/development of solutions PO9 Individual and team work 2 Moderate/ Medium

PO4 Conduct investigations of complex
problems PO10 Communication 3 Substantial/ High

PO5 Modern tool usage PO11 Project management and finance
PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies
PSO2 Design and develop secure, parallel, distributed, networked, and digital systems
PSO3 Apply software engineering methods to design, develop, test and manage software systems.
PSO4 Develop intelligent applications for business and industry

	1. Volume:
	2. Velocity:
	3. Variety:
	4. Veracity:
	5. Value:
	1. Structured Data
	2. Semi-Structured Data
	3. Unstructured Data
	1. Massive Parallel Processing (MPP)
	2. Cluster Computing
	1. Horizontal Scalability (Scale-Out)
	2. Vertical Scalability (Scale-Up)
	Summary
	1. Predictive Analytics for Patient Care
	2. Personalized Medicine and Treatment Plans
	3. Improving Diagnosis Accuracy
	4. Operational Efficiency in Healthcare Facilities
	5. Remote Monitoring and Telemedicine
	6. Drug Discovery and Development
	1. Data Ingestion Layer
	2. Data Storage Layer
	3. Data Processing Layer
	4. Data Analytics Layer
	5. Data Visualization Layer
	Diagram
	1. Hadoop Distributed File System (HDFS)
	2. MapReduce
	3. YARN (Yet Another Resource Negotiator)
	4. Hadoop Common
	Diagram
	Summary of Component Interactions
	1. Basic Concept of MapReduce
	Map Function
	Reduce Function

	2. Workflow of MapReduce
	1. Input Splitting
	2. Mapping
	3. Shuffling and Sorting
	4. Reducing
	5. Output

	3. Key Features of MapReduce in Distributed Comput
	4. Example Use Case
	1. Resource Management
	2. Job Scheduling
	3. Fault Tolerance
	4. Multi-tenancy
	5. Dynamic Resource Allocation
	6. Application Lifecycles Management
	7. Security and Access Control
	8. Metrics and Monitoring

