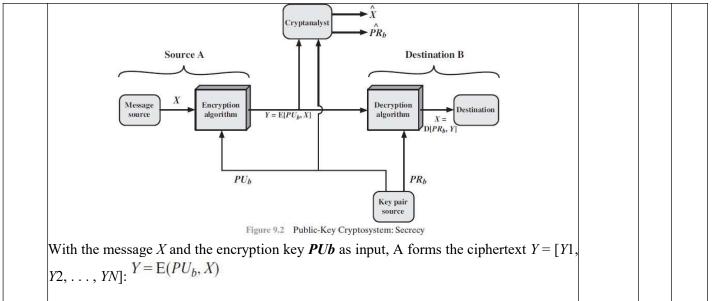
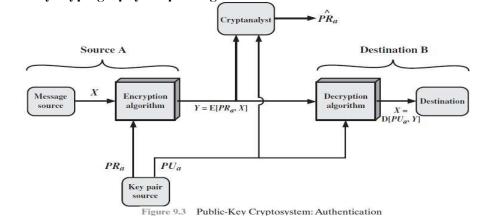

Internal Assessment Test 1- Oct. 2024


SCHEME & SOLUTION

	Cryptography and Network Security	Sub Code:	21IS71	Branch:	ISE	
	Answer any FIVE FULL question	<u>IS</u>	1	MARKS	CO	RB
1	What are crypto systems?. Explain general Caesar algo the plain text " meet me after the toga party " using Caesa		t cipher text	for 2+5+3 [10]	CO1	L3
	The systems that are capable of encrypting and decryp transmitted in network are called crypto systems.	ting data before	being stored	l or		
	Caesar Cipher:					
	The algorithm can be expressed as follows. For each plain ciphertext letter C: $C = E(3, p) = (p + 3) \mod 26$	ntext letter <i>p</i> , sub	ostitute the			
	A shift may be of any amount, so that the general Caesar $C = E(k, p) = (p + k) \mod 26$	0				
	where k takes on a value in the range 1 to 25. The decrypt $p = D(k, C) = (C k) \mod 26$	C				
	If it is known that a given ciphertext is a Caesar cipher, the easily performed: Simply try all the 25 possible keys.	nen a brute-force	cryptanalysi	IS IS		
	For example,					
	plain: meet me after the toga party Cipher: PHHW PH DIWHU WKH WRJD SDUWB					
2	Using Key word "Monarchy", explain Playfair Cipher ger	neration method.		4+6 [10]	CO1	L3
	The best-known multiple-letter encryption cipher is the l the plaintext as single units and translates these units into			s in		
	The Playfair algorithm is based on the use of a 5 x 5 mat keyword. Here is an example,			ng a		
	MONAR					
	C H Y B D E F G I/J K					
	LPQST					
	UVWXZ					
	In this case, the keyword is <i>monarchy</i> . The matrix is cons the keyword (minus duplicates) from left to right and from in the remainder of the matrix with the remaining letters i	m top to bottom, n alphabetic orde	and then filler.	ling		
	The letters I and J count as one letter. Plaintext is e according to the following rules: 1. Repeating plaintext letters that are in the same pair a					
	such as x, so that balloon would be treated as balx lo on. 2. Two plaintext letters that fall in the same row of the	_				
	letter to the right, with the first element of the row ciexample, ar is encrypted as RM.	rcularly followi	ng the last.	For		
	3. Two plaintext letters that fall in the same column beneath, with the top element of the column circularly					

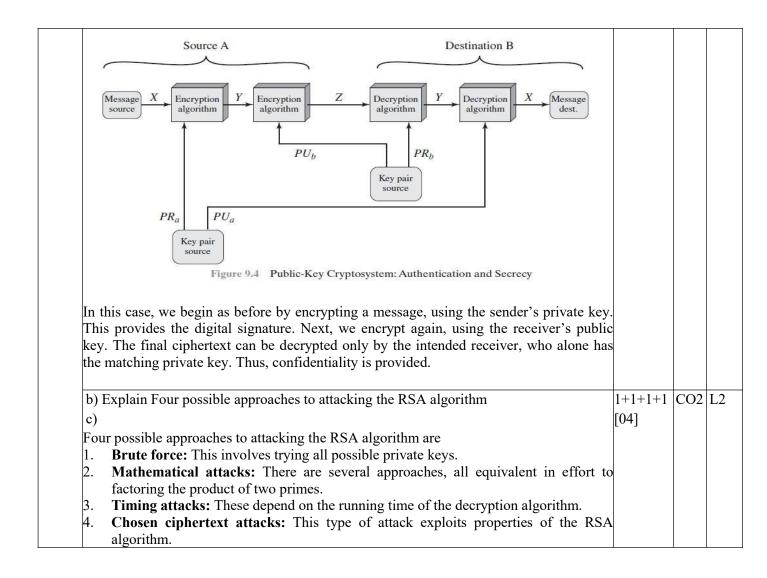
	mu is encrypted as CM.			
	4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the column occupied by the other plaintext letter. Thus, he becomes BP and ea			
	becomes IM (or JM, as the encipherer wishes).			
3		[10]	CO1	L3
	Text Message: "paymoremoney"			
	$(17 \ 17 \ 5)$			
	21 18 21			
	Use the encryption key: $\begin{pmatrix} 17 & 17 & 5\\ 21 & 18 & 21\\ 2 & 2 & 19 \end{pmatrix}$ a. Show your calculations for encryption and decryption			
	a. Show your calculations for encryption and decryption			
	b. Construct cipher text			
	HILL CIPHER:			
	The first three letters of the plaintext are represented by the vector			
	MORE THE INFORMATION AND THE ADDRESS OF THE ADDRESS			
	$\binom{15}{0}_{24}$. Then $\mathbf{K}\binom{15}{0}_{24} = \binom{375}{819}_{486} \mod 26 = \binom{11}{13}_{18} = \text{LNS. Continuing in this fashion,}$			
	(24) (24) (486) (18)			
	the ciphertext for the entire plaintext is LNSHDLEWMTRW.			
	Decryption requires using the inverse of the matrix K . The inverse K-1 of a matrix K is			
	defined by the equation $\mathbf{K}\mathbf{K}$ -1 = \mathbf{K} -1 \mathbf{K} = I . In this case, the inverse			
	$\mathbf{K}^{-1} = \begin{pmatrix} 4 & 9 & 15\\ 15 & 17 & 6\\ 24 & 0 & 17 \end{pmatrix}$			
	$\begin{pmatrix} 12 & 1 & 0 \\ 24 & 0 & 17 \end{pmatrix}$			
	This is demonstrated as follows:			
	$(17 \ 17 \ 5)(4 \ 9 \ 15) \ (443 \ 442 \ 442) \ (1 \ 0 \ 0)$			
	21 18 21 15 17 6 = 858 495 780 mod $26 = 0 1 0$			
	$ \begin{pmatrix} 17 & 17 & 5\\ 21 & 18 & 21\\ 2 & 2 & 19 \end{pmatrix} \begin{pmatrix} 4 & 9 & 15\\ 15 & 17 & 6\\ 24 & 0 & 17 \end{pmatrix} = \begin{pmatrix} 443 & 442 & 442\\ 858 & 495 & 780\\ 494 & 52 & 365 \end{pmatrix} \mod 26 = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} $			
	It is easily seen that if the matrix K-1 is applied to the ciphertext, then the plaintext is			
	recovered.			
	In general terms, the Hill system can be expressed as follows:			
	$\mathbf{C} = \mathbf{E}(\mathbf{K}, \mathbf{P}) = \mathbf{KP} \mod 26$			
	$\mathbf{P} = \mathbf{D}(\mathbf{K}, \mathbf{P}) = 1\mathbf{C} \mod 26 = 1 \mathbf{KP} = \mathbf{P}$			
4	Using RSA Algorithm show encryption and decryption of plaintext message M=88.	5+5 [10]	CO2	L3
	Assume $p=17,q=11$ and $e=7$.			
	Example:			
	1. Select two prime numbers, $p = 17$ and $q = 11$.			
	2. Calculate $n = pq = 17 \times 11 = 187$. 3. Calculate $\emptyset(n) = (p - 1)(q - 1) = 16 \times 10 = 160$.			
	4. Select e such that e is relatively prime to $\mathcal{O}(n) = 160$ and less than $\mathcal{O}(n)$; we choose $e = 160$			
	7. Select e such that e is relatively prime to $\mathcal{O}(n) = 100$ and less than $\mathcal{O}(n)$, we choose $e = 7$.			
	5. Determine d such that $de \equiv 1 \pmod{160}$ and $d < 160$. The correct value is $d = 23$,			
	because $23 * 7 = 161 = (1 \times 160) + 1;$			
	The resulting keys are public key $PU = \{7, 187\}$ and private key $PR = \{23, 187\}$.			


	Encryption Decryption			
	Plaintext $88 \longrightarrow 88$ mod $(87) = 11$ Ciphertext $11 \longrightarrow 11^{(27)} mod (87) = 88 \longrightarrow 88$ PU = 7, 187 $PR = 23, 187$			
	Figure 9.6 Example of RSA Algorithm			
	For encryption, Calculate $C = 88^7 \mod 187$. Exploiting the properties of modular arithmetic, we can do this as follows. $88^7 \mod 187 = [(88^4 \mod 187) \times (88^2 \mod 187)) \times (88^1 \mod 187)] \mod 187$			
	$88^1 \mod 187 = 88$			
	$88^2 \mod 187 = 7744 \mod 187 = 77$			
	88 ⁴ mod 187 = 59,969,536 mod 187 = 132			
	88 ⁷ mod 187 = (88 × 77 × 132) mod 187 = 894,432 mod 187 = 11			
	For decryption, Calculate M = $11^{23} \mod 187$. $11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)] \mod 187$			
	$11^1 \mod 187 = 11$			
	$11^2 \mod 187 = 121$			
	$11^4 \mod 187 = 14,641 \mod 187 = 55$			
	$11^8 \mod 187 = 214,358,881 \mod 187 = 33$			
	$11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187 = 79,720,245 \mod 187 = 88$			
5			CO1	L2

The intended receiver, in possession of the matching private key, is able to invert the transformation: $X = D(PR_b, Y)$

Public key cryptography for proving Authentication:

The above diagrams show the use of public-key encryption to provide authentication: $Y = E(PR_a, X)$


 $X = D(PU_a, Y)$

- In this case, A prepares a message to B and encrypts it using A's private key before transmitting it. B can decrypt the message using A's public key. Because the message was encrypted using A's private key, only A could have prepared the message. Therefore, the entire encrypted message serves as a **digital signature**.
- It is impossible to alter the message without access to A's private key, so the message is authenticated both in terms of source and in terms of data integrity.

Public key cryptography for both authentication and confidentiality (Secrecy)

It is, however, possible to provide both the authentication function and confidentiality by a double use of the public-key scheme (above figure):

 $Z = E(PU_b, E(PR_a, X))$ $X = D(PU_a, D(PR_b, Z))$

