USN										
-----	--	--	--	--	--	--	--	--	--	--

Internal Assessment Test 1 – November 2024

Sub:	Digital Desig	gn and Con		anization		Sub Code:	BCS302	Branc	h: CSE		
Date:	06/11/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: 3 rd semester/					ster/A,B	,C	0	BE		
	Answer any FIVE FULL Questions						MARKS	<u>CO</u>	<u>RBT</u>		
1 a)	What is posit	ive logic a	nd negativ	e logic?					[2]		
	A digital syst I/P in four-bit as "0001" and of the month number in the (i) Write truth (iii) Realize u	t form. The l so on. Th containing e I/P beyor table, SO using basic	e month of e output o 31 days, o d 1011' as P and PO gates	January is re f the system or otherwise, don't care co S form (ii) S	epres shou it is ondi impl	sented as '(ild corresp '0'.Consid tion: ify for SO	0000', Febru ond to the in er the exces P using K-n	ary nput s	[8]	CO1	L3
	2 a) Define1.Implicant2.Prime Implicant[3+2]4. Redundant prime implicant.					C01	L2				
b)	What is a tris	tate buffer	? Design 4	4-to-1-line m	iux i	ising trista	te buffer.		[2+3]	CO2	

Internal Assessment Test 1 – November 2024

USN

Sub:	Digital Design and Computer Organization		-	Sub Code:	BCS302	Branc	: CS	E				
Date:	Date: 06/11/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: 3 rd semester/A							ster/A,B,0			OE	
_			Answer any FI	VE FULL Questions					<u>MARKS</u>	<u>C(</u>	2	<u>RBT</u>
1 a)	What is positi	ve logic an	d negative	logic?					[2]			
b)	A digital syste in four-bit for "0001" and so month contain the I/P beyond (i) Write truth (iii) Realize u	m. The mo on. The ou ning 31 day d 1011' as d table, SOF	nth of Janu utput of the s, or other lon't care c and POS	ary is represe system shou wise, it is '0'.0 ondition:	ented ld co Cons	as '0000', prrespond t ider the ex	February as o the input o cess number	f the in	[8]	C	01	L3
	Define 1.Imp 4. Redundant Identify Prim $f(A,B,C,D)=\sum$ What is a trist	prime imp e implicant 2m(1,3,4,5,	licant. t and essen 10,1112,13	tial prime im 5,14,15)	plica	nt			[3+2]	co		L2

	What is the drawback of n-bit ripple carry adder? Design and explain 4 bit carry look ahead adder.	[5]		
b)	Write a Verilog HDL code to simulate the working of Half adder and Full adder in data flow and structural model	[2.5+2.5]	CO2	L3
	Implement Y (A, B, C, D) = $\sum m (0, 1, 6, 7, 8, 9, 10, 11, 12, 14)$ using 8-to-1 multiplexer. Design 9:1 MUX using 2:1	[5+5]	CO2	L2
5a) b)	With neat diagram, explain basic operational concepts of a computer With a neat diagram, explain the different processor registers.	[6+4]	CO3	L2
6.a)	What is the difference between latch and flip flop? Design NOR S-R latch.	[1+2]	CO2	,L3
-)	Derive the characteristic equation of J-k Flip flop .Convert J-K flip flop to D flip flop	[4+3]		

1	٦	T
C	~	I

CCI

HOD

	What is the drawback of n-bit ripple carry adder? Design and explain 4 bit carry look ahead adder.	[5]		
	Write a Verilog HDL code to simulate the working of Half adder and Full adder in data flow and structural model	[2.5+2.5]	CO2	L3
	Implement Y (A, B, C, D) = $\sum m (0, 1, 6, 7, 8, 9, 10, 11, 12, 14)$ using 8-to-1 multiplexer. Design 9:1 MUX using 2:1	[5+5]	CO2	L2
5a) b)	With neat diagram, explain basic operational concepts of a computer With a neat diagram, explain the different processor registers.	[6+4]	CO3	L2
,	What is the difference between latch and flip flop? Design NOR S-R latch.	[1+2]	CO2	,L3
-)	Derive the characteristic equation of J-k Flip flop .Convert J-K flip flop to D flip flop	[4+3]		

CI

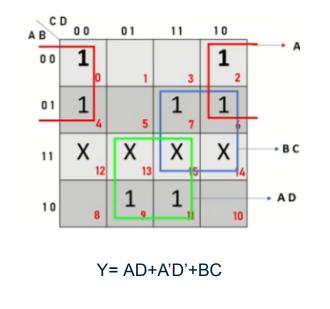
Internal Assessment Test 1

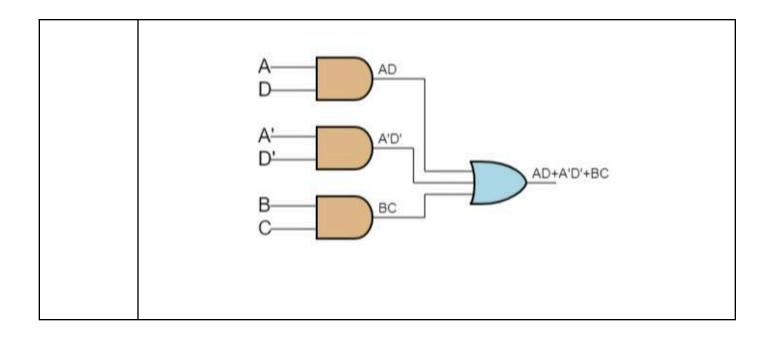
Solution

Sub:	Digital Design and Computer Organization				Sub Code:	BCS302	Branch:	CSE	
Date:	06/11/2024	Duration:	90 mins	Max Marks:	50	Sem / Sec:		3 A,B,C	

What is positive log	ic and negative logic?	
Positive logic and neg relate to the voltages		s that define how logical values
Positive logic A high voltage level re Negative logic	epresents a logic 1, and a low	voltage level represents a logic 0.
	epresents a logic 1, and a high	voltage level represents a logic 0.
given as I/P in fou '0000', February a	as "0001" and so on. The o	n the month of the year is January is represented as output of the system should aining 31 days, or otherwise
care condition: (i) Write truth tabl	the excess number in the le, SOP and POS form (ii) e using basic gates	-
care condition: (i) Write truth tabl K-map (iii) Realize	le, SOP and POS form (ii)	-
care condition: (i) Write truth tabl K-map (iii) Realize	le, SOP and POS form (ii) e using basic gates	Simplify for SOP using
care condition: (i) Write truth tabl K-map (iii) Realize <u>Truth Table</u> Name of Month	le, SOP and POS form (ii) e using basic gates Month in binary	Simplify for SOP using Output (F)
care condition: (i) Write truth tabl K-map (iii) Realize <u>Truth Table</u> Name of Month January	le, SOP and POS form (ii) e using basic gates Month in binary	Simplify for SOP using Output (F) 1
care condition: (i) Write truth table K-map (iii) Realized Truth Table Name of Month January February	le, SOP and POS form (ii) e using basic gates Month in binary 0000 0001	Simplify for SOP using Output (F) 1 0
care condition: (i) Write truth table K-map (iii) Realized Truth Table Name of Month January February March	le, SOP and POS form (ii) e using basic gates Month in binary 0000 0001 0010	Simplify for SOP using Output (F) 1 0 1
care condition: (i) Write truth table K-map (iii) Realized Truth Table Name of Month January February March April	Ie, SOP and POS form (ii) e using basic gates Month in binary 0000 0001 0010 0011	Simplify for SOP using Output (F) 1 0 1 0 0 0 0

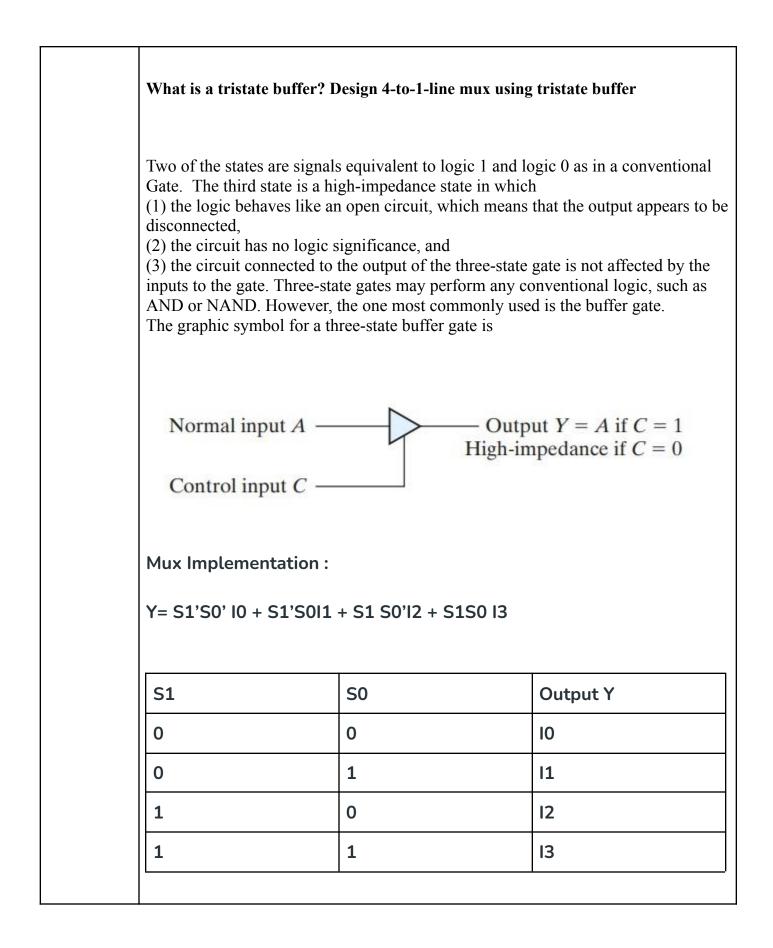
August	0111	1
September	1000	0
October	1001	1
November	1010	0
December	1011	1
	1100	x
	1101	x
	1110	x
	1111	х

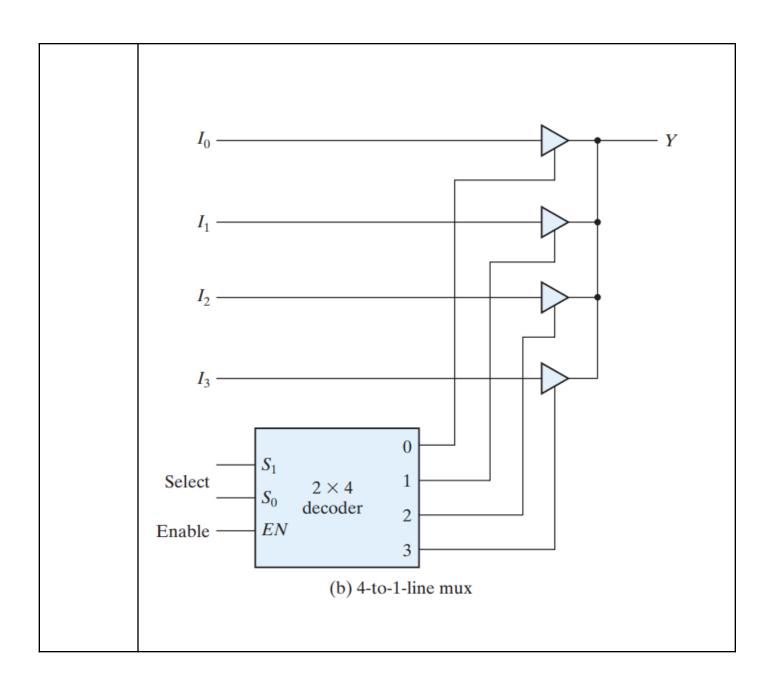

SOP Form:

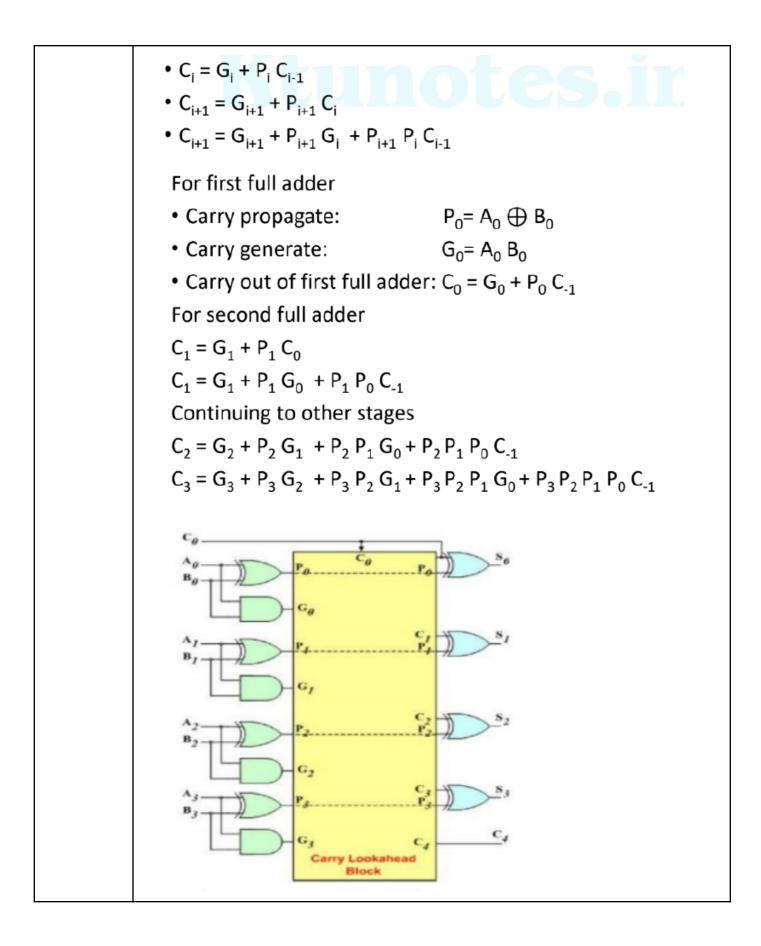

 $\Sigma m = m0 + m2 + m4 + m6 + m7 + m9 + m11 + d12 + d13 + d14 + d15$ $Y = \Sigma m(0,2,4,6,7,9,11) + d(12,13,14,15)$

POS Form :

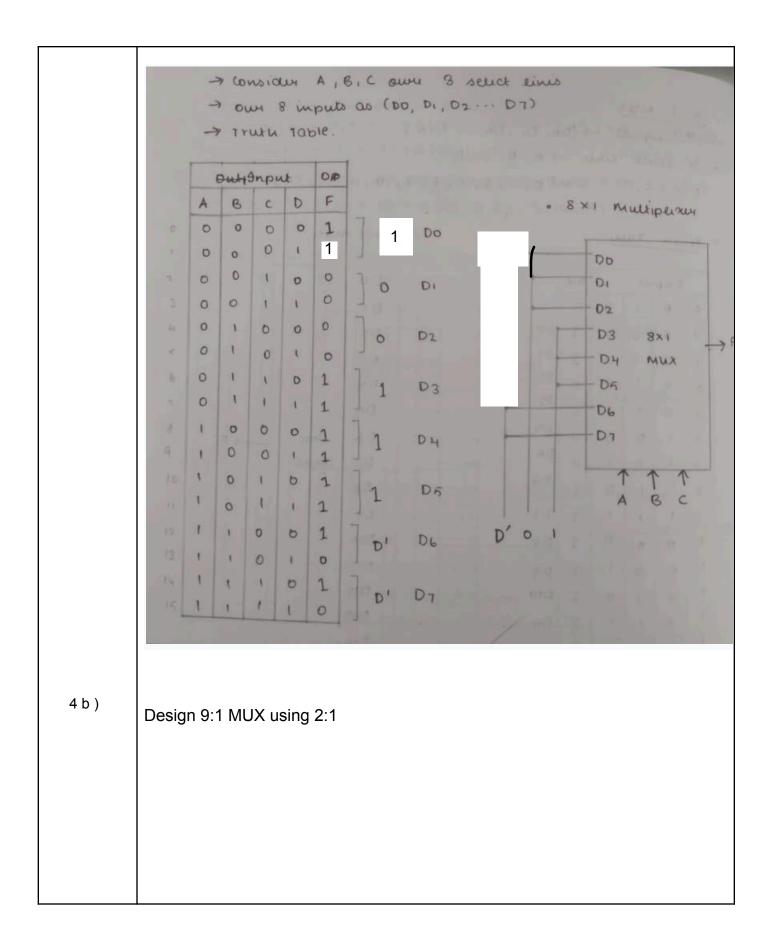
 $\pi M = M1+M3+M5+M8+M10+D12 + D13 + D14 + D15$

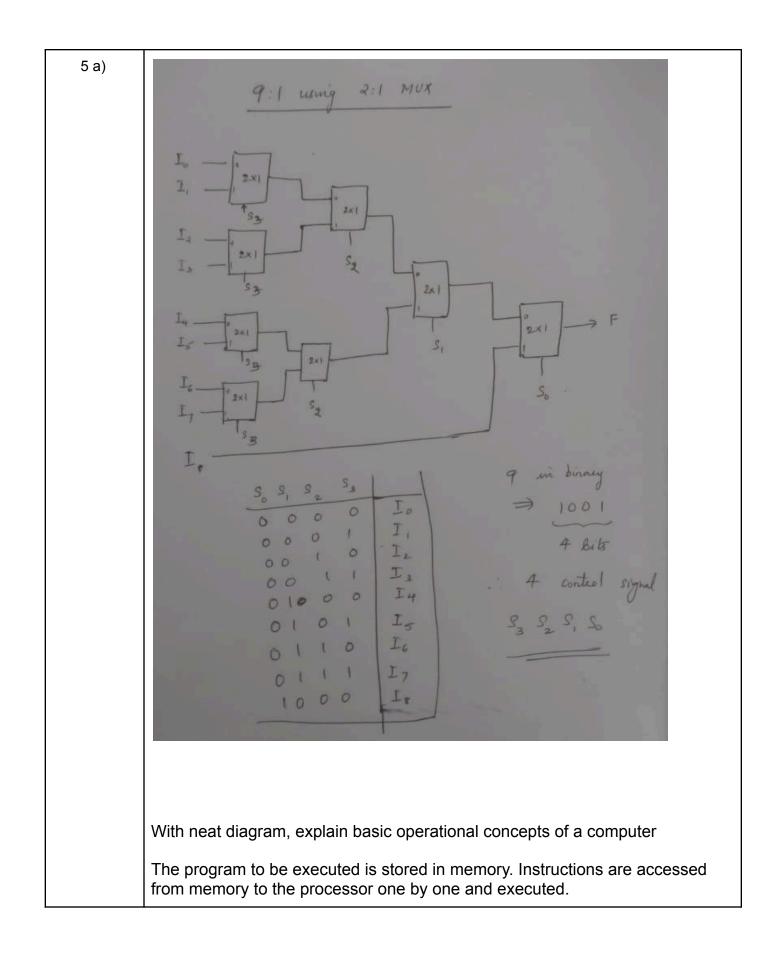

 $Y = \pi M(1,3,5,8,10) + D(12,13,14,15)$



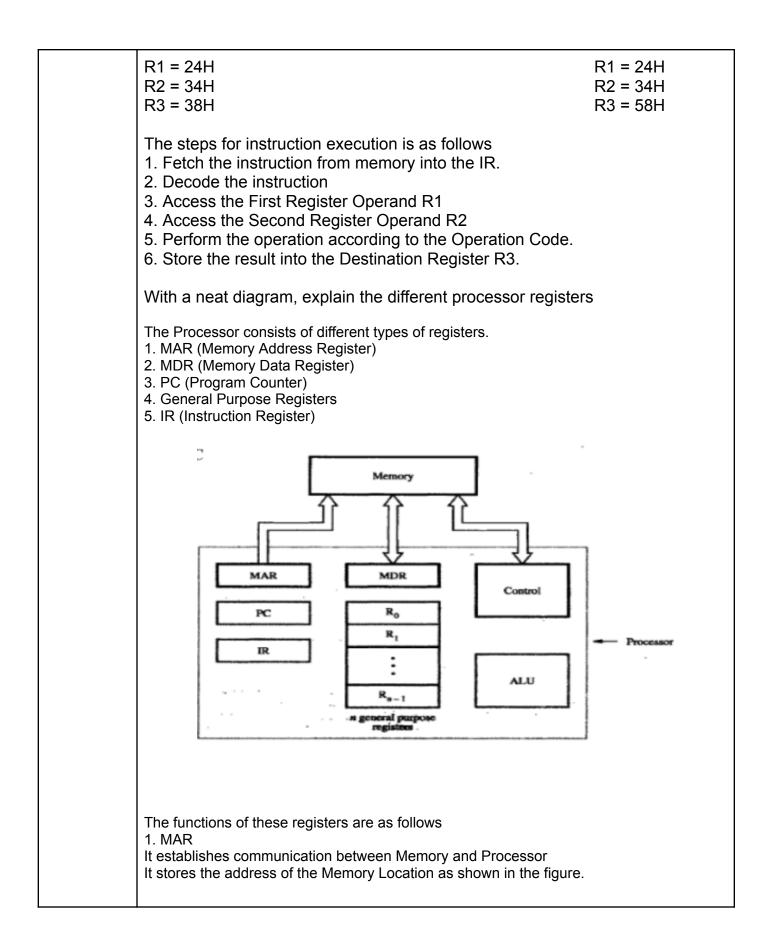

2 a)	Define 1.Implicant 2.Prime Implicant 3.Essential Prime Implicant 4. Redundant prime implicant Identify Prime implicant and essential prime implicant
	f(A,B,C,D)=∑m(1,3,4,5,10,11,12,13,14,15)
	Implicant is a product/minterm term in Sum of Products (SOP) or
	sum/maxterm term in Product of Sums (POS) of a Boolean function.
	A group of squares or rectangles made up of a bunch of adjacent minterms which is allowed by the definition of K-Map are called prime
	implicants(PI)
	These are those subcubes(groups) that cover at least one minterm that can't be covered by any other prime implicant. Essential prime
	implicants(EPI) are those prime implicants that always appear in the final solution.
	The prime implicants for which each of its minterm is covered by
	some essential prime implicant are redundant prime implicants(RPI).
	This prime implicant never appears in the final solution.

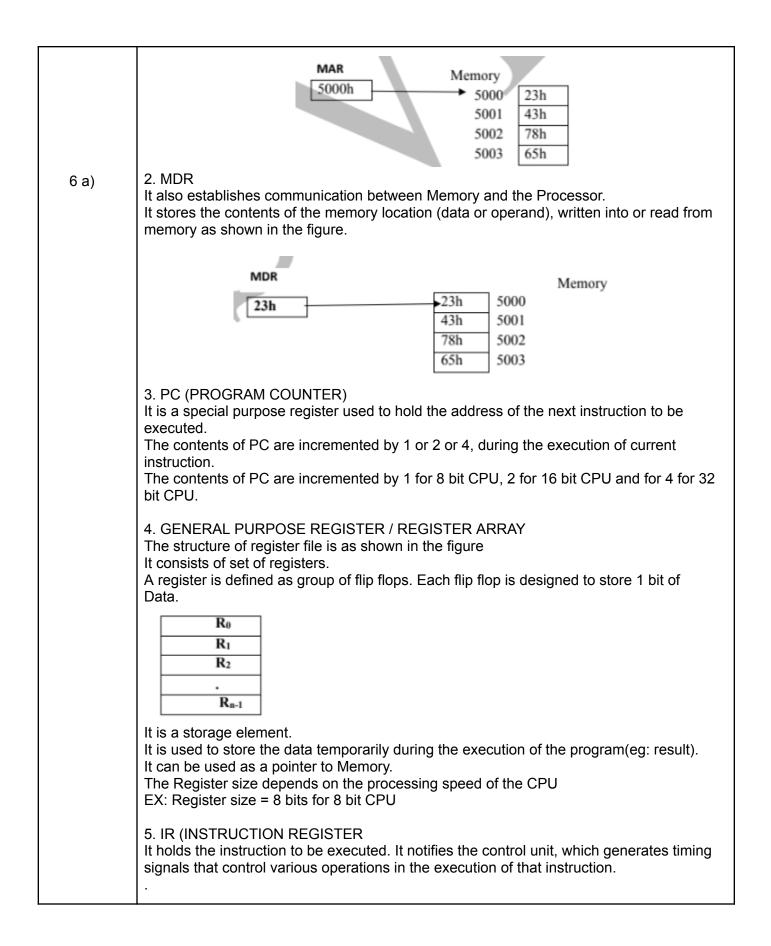
CD AB (3 и Prime Implicants BC ' ABD AC b) AB EPI: BC', A'B'D, AC Redundant PI : AB

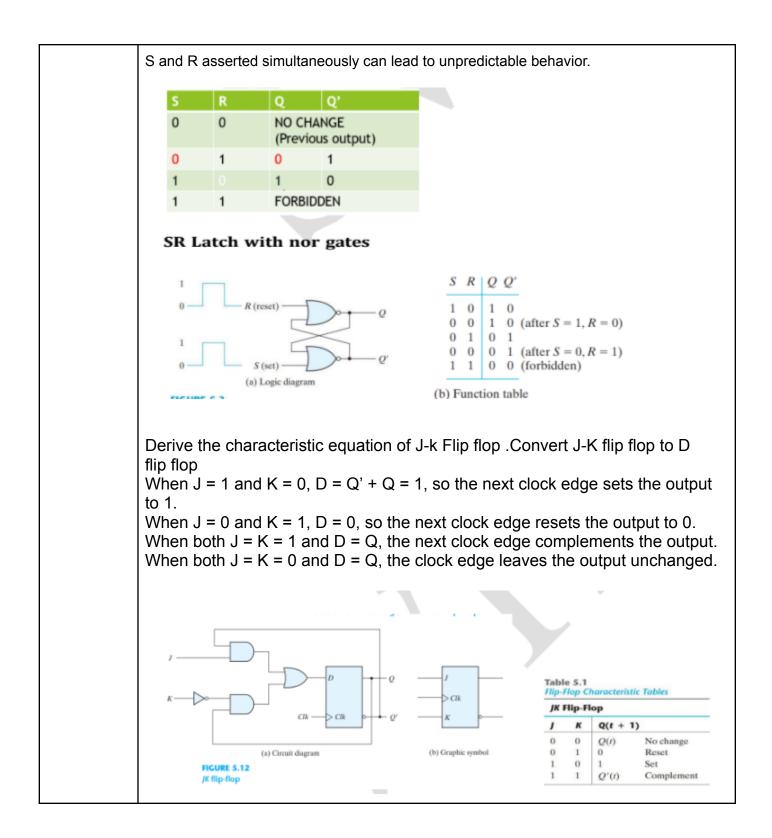

3	a)What is the drawback of n-bit ripple carry adder? Design and explain 4 bit carry look ahead adder
	The main drawback of an n-bit ripple carry adder is that it can be slow when the value of (N) is large. This is because each full adder must wait for the carry-in from the previous full adder. This means that the nth full adder must wait until all (n-1) full adders have finished their operations
	Carry Look Ahead Adder
	Overcomes the drawback of Parallel adder
	 Sum and carry outputs of each stage are made independent of the results of previous stages- ripple effect is eliminated
	Uses concept of look-ahead carry
	 Requires additional circuitry but speed becomes independent of number of bits (or stages)
	• $C_i = A_i B_i + C_{i-1} (A_i \bigoplus B_i)$
	• Let P_i be carry propogate, $P_i = A_i \bigoplus B_i$
	• Let G_i be carry generate , $G_i = A_i B_i$

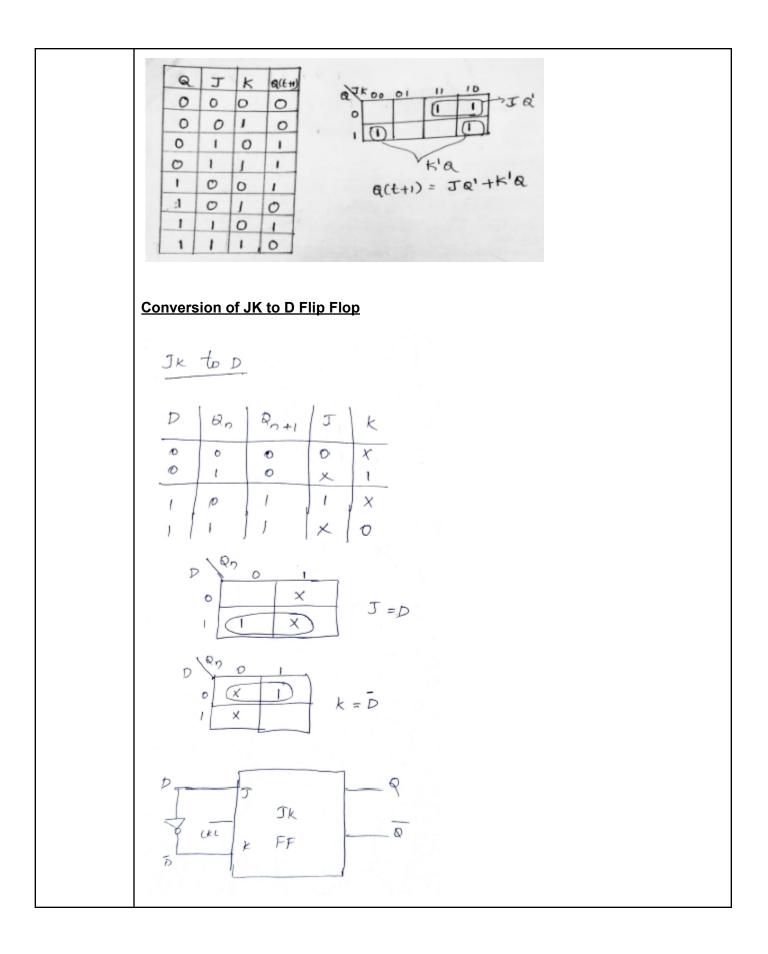



```
3 b)
          Write a Verilog HDL code to simulate the working of Half adder and Full
          adder in data flow and structural model
          HALF ADDER
          Dataflow Modelling
         module half adder (
              input a,b,
            output sum, carry
          );
          assign sum = a ^ b;
          assign carry = a & b;
          endmodule
          Structural
          module half adder (
               input a,b,
             output sum, carry
          );
          xor (s, a, b);
          and(c, a, b);
          endmodule
          FULL ADDER
          Dataflow Modelling
          module full adder d (
               input a,b,cin,
            output sum, carry
          );
          assign sum = a ^ b ^ cin;
          assign carry = (a \& b) | (b \& cin) | (cin \& a)
          ;
          endmodule
```


```
Structural Modeling
```


```
module full adder s (
           input a, b, cin,
         output sum, carry
       );
      wire w1,w2,w3,w4; //Internal connections
      xor(w1,a,b);
                                 //Sum output
      xor(sum,w1,cin);
      and (w2, a, b);
      and(w3,b,cin);
      and(w4,cin,a);
      or(carry,w2,w3,w4); //carry output
       endmodule
      Implement Y (A, B, C, D) = ∑m (0, 1, 6, 7, 8, 9, 10, 11, 12, 14) using 8-to-1
4 a)
      multiplexer.
```


	<u> </u>
	STEPS FOR INSTRUCTION EXECUTION Consider the following instruction Ex: 1 Add LOCA, R0
	This instruction is in the form of the following instruction format
	Opcode Source, Destination
	Where Add is the operation code, LOCA is the Memory operand and R0 is Register operand This instruction adds the contents of memory location LOCA with the contents of Register R0 and the result is stored in R0 Register. The symbolic representation of this instruction is $R0 \leftarrow [LOCA] + [R0]$
5 b)	The contents of memory location LOCA and Register R0 before and after the execution of this instruction is as follows Before instruction execution After instruction execution LOCA = 23H LOCA = 23H R0 = 22H R0 = 45H
	 The steps for instruction execution are as follows 1. Fetch the instruction from memory into the IR (instruction register in CPU). 2. Decode the instruction 1111000000 10011010 3. Access the Memory Operand 4. Access the Register Operand 5. Perform the operation according to the Operation Code. 6. Store the result into the Destination Memory location or Destination Register. Ex:2 Add R1, R2, R3
	This instruction is in the form of the following instruction format Opcode, Source-1, Source-2, Destination
	Where R1 is Source Operand-1, R2 is the Source Operand-2 and R3 is the Destination. This instruction adds the contents of Register R1 with the contents of R2 and the result is placed in R3 Register.
	The symbolic representation of this instruction is $R3 \leftarrow [R1] + [R2]$
	The contents of Registers R1,R2,R3 before and after the execution of this instruction is as follows. Before instruction execution After instruction execution

	Flip-Flop	Latch
6 b)	Flip-flop is a bistable device i.e., it has two stable states that are represented as 0 and 1.	Latch is also a bistable device whose states are also represented as 0 and 1.
	It checks the inputs but changes the output only at times defined by the clock signal or any other control signal.	It checks the inputs continuously and responds to the changes in inputs immediately.
	It is a edge triggered device.	It is a level triggered device.
	Gates like <u>NOR, NOT</u> , <u>AND</u> , <u>NAND</u> are building blocks of flip flops.	These are also made up of gates.
	They are classified into asynchronous or synchronous flipflops.	There is no such classification in latches
	Flip-flop always have a clock signal	Latches doesn't have a clock signal
	ex: <u>D Flip-flop, JK Flip-flop</u>	ex:SR Latch, D Latch

