

USN							.1 4			4 TT	a = 1	1 007	200	•		CMR INSTIT	UTE OF TECHNOLOGY		
Sub:	NOSQ	ι ηλ'	гара	SE	In	terna	II A	sses	ssme	ent I	est	$\frac{1 - OCT}{Sub Cool}$		24 21CS7	145		Branch:	ISI	יז
Date:	15/10/2			BASE ration: 90 min Max Marks: 50				50	Sub Cot Sem/S			-	′ A, B &			BE			
Juio	10/10/2		Duru							L Qu					,,	,	MARKS		RBT
1.	Relation Scheme Solution NoSQL	s and : Defi : datab ationa	Aggreg nition ases (' l table	gates. + exp 'not o es whi	lanati nly S ch co	ion + QL") omes :	exa are	mple e nor a var	e + I n-tal riety	Diagr a bular of ty	am data pes	els with, C – 2+3+2+ abases an based on l graph.	3 M d sto	arks ore data	diff	Ferently		1	L2
	Aggrega	ate Da	ta Moo	dels															
	•	A data	model	l is the	mode	el thro	oug	h wh	nich	we pe	rcei	ve and ma	nipu	ılate our	data	ì.			
		For peother	-	sing a	databa	ase, tł	he d	lata 1	mode	el des	crib	es how we	inte	eract with	n the	e data in			
		The re tuples			el tak	tes the	e in	nforn	natio	on tha	t we	e want to	store	e and div	vide	s it into			
		-	vithin a	anothe					-			of values, you put a	-						
	to custo catalog, scenario	sume w mers o orders to mo	ve have over the s, shipp del the	e to bui e web ping a e data	ild an , and ddres using	e-cor we v ses, t a rel	nme vill billi latic	have ing a on da	e to addre ata s	store esses, tore a	info anc s we	re going to ormation a l payment ell as NoS ght start w	ibou dat QL	t users, a. We c data sto	our an res a	product use this and talk			
			n	Custor	ner	1				*	Orde	, <u>,</u> , ,		1					
			[Billin Addre * 1		1		*	Order cardNu txnld	Paymer	1	Order Iter price							
				Addre street city state post code		1 shippin	ng Ad	dress	8			name							
		Figur	<u> </u>		_				d a r	elation	nal d	latabase (u	sing	UML no	tatio	n)			

			1	
Relational in a (most) Standard Model databases have succeeded because they provide the core benefits we outlined earlier ly) standard way. As a result, developers and database professionals can learn the ional model and apply it in many projects.			
-	briefly about impedance mismatch, with a neat diagram. Definition + explanation + Diagram – 1+2+2 Marks	[5]		
line it	mer: Ann			
paym Ca	21601912 1 \$39 \$39 31495054 1 \$51 \$51 ent details:			
_				
W	or Application developers using relational databases, the biggest frustration has been hat's commonly called the impedance mismatch: the difference between the lational model and the in-memory data structures.			
• Ti se				
• Ti su w				
• T th				
of	npedance mismatch has been made much easier to deal with by the wide availability object relational mapping frameworks, such as Hibernate and iBATIS that nplement well-known mapping patterns.			
Describe t Conseque	he following with reference to aggregate data models: nces of Aggregate Orientation, Document data model, Key-value data model and mily stores.	[10]	1	L2
	Definition + explanation with Diagram for each – 3+2+3+2 Marks			
	nces of Aggregate Orientation			
aggregate aggregate particular	al databases have no concept of aggregate within their data model, so we call them ignorant. In the NoSQL world, graph databases are also aggregate-ignorant. Being ignorant is not a bad thing. It's often difficult to draw aggregate boundaries well, y if the same data is used in many different contexts.			
the retaile • Howeve	makes a good aggregate when a customer is making and reviewing orders, and when r is processing orders. r, if a retailer wants to analyse its product sales over the last few months, then an egate becomes trouble.			
	egate-ignorant model allows you to easily look at the data in different ways, so it is a acce when you don't have a primary structure for manipulating your data.			
better cho	e Data Model			

	 array, along with a key used to reference that value. For example, a simple key-value database might have a value such as "Douglas Adams". This value is then assigned an ID, such as cust1237. Using a JSON structure adds complexity to the database. For example, the database could store a full mailing address in addition to a person's name. In the previous example, key cust1237 could point to the following information: name: "Douglas Adams", street: "782 Southwest St.", city: "Austin", state: "TX" Document Data Model It is a type of non-relational database that is designed to store and query data as JSON-like documents, which makes it easier for a developer to store and query data in a database. It works well with use cases such as catalogues, user profiles etc. In document store. The flexible, semi-structured and hierarchical nature of documents and document databases allows them to evolve with applications need. Example: Book document ("id": "98765432", "type": "book", "TSN": 987-6-543-21012-3, "Author": ("tuber: "Noe", "MI":"T", "Fname": "Richard" "itsn": 987-6-543-21012-3, "Author": One of the early and powerful NoSQL databases was Google's BigTable, it is a two-level map. It has been a model that influenced later databases such as HBase and Cassandra. These databases have a row as a unit of storage which, in particular, helps write performance. However, there are many scenarios where writes are rare, but you often need to read a few columns of many scenarios where writes are rare, but you often need to read a few columns of many rows at once. 			
4.	Explain graph and schemaless databases with a neat diagram Scheme : Definition + explanation with Diagram for each – 5+5 Marks Solution : Graph Databases • Graph databases are an odd fish in the NoSQL pond. • Most NoSQL databases were inspired by the need to run on clusters, which led to aggregate oriented data models of large records with simple connections. • Graph databases are motivated by a different frustration with relational databases and thus have an opposite model—small records with complex interconnections • Graph databases interconnections • Graph databases are motivated by a different frustration with relational databases and thus have an opposite model—small records with complex interconnections • Original provide the state of the sta	[10]	1	L2

	 Schema less Databases A common theme across all the forms of NoSQL databases is that they are schemaless. When you want to store data in a relational database, you first have to define a schema a defined structure for the database which says what tables exist, which columns exist, and what data types each column can hold. Before you store some data, you have to have the schema defined for it in relational database. With a schema: You have to figure out in advance what you need to store, but that can be hard to do. Without a schema: You can easily store whatever you need. This allows you to easily change your data storage as you learn more about your project. You can easily add new things as you discover them. If you find you don't need some things any more, you can just stop storing them, without worrying about losing old data as you would if you delete columns in a relational schema. A schema puts all rows of a table into a straightjacket, which becomes awkward if you have different kinds of data in different rows. You either end up with lots of columns that are usually null (a sparse table), or you end up with meaningless columns, like custom column 4. 			
5.	 Identify the type of conflict in the following scenario: Martin and Pramod share a common Google sheet online. Both read a file. Martin updates the document and forgets to save the file. On the other hand, Pramod updates the sheet and saves the file. The content updated by Martin overwritten by Pramod. The data updated by Martin is lost. Apply suitable technique of consistency in solving the above conflict to handle the NoSQL database. Scheme : Explanation of Data consistency by applying different techniques with conclusion - 2+2+2+2* Marks each Solution : The scenario involves a conflict of data consistency. Specifically, it's a classic case of a lastwrite-wins issue, where concurrent updates from different users can lead to data loss, as seen when Martin's unsaved changes are overwritten by Pramod's saved updates. To address this conflict in a NoSQL database, need to apply the following techniques: 1.0ptimistic Concurrency Control (OCC) Description: OCC allows multiple users to read the same data simultaneously but requires a check before writing back any changes. Before saving, the application checks whether the original data has been modified by another user since it was read. Implementation: When Martin or Pramod makes updates, they read the version number or timestamp of the document and before saving, they compare the current version with the one they initially read. If it's the same, they can safely write; if not, they receive an error and must reconcile the changes manually. Versioning Description: Each update creates a new version of the document, allowing for tracking changes over time. Implementation: Instead of overwriting data, the system saves each update as a new version. Users can then choose to view, merge, or restore previous versions if necessary. Conflict-Free Replicated Data Types (CRDTs) Description: CRDTs allow multiple users to make changes oncurrently without conflicts. 	[10]	1	L3

													Solaryears *	
USN												1	CMR INSTITUTE OF TECHNOLOGY, BENGALURU ACCREDITED WITH ALL DRADE BY NAME	
Internal Assassment Test 1 – OCT 2024														

	Internal Assessment Test 1 – OCT 2024														
Sub:	NOSQL DATABASESub Code:21CS745										£				
Date:	15/10/2024 Duration: 90 min Max Marks: 50 Sem/Sec: VII/ A, B &										BE				
	Answer any FIVE FULL Questions														
1.	What is NOSC	ple of	[10]	1	L2										
	Relations and														
2.	a. Briefly desc		[5]												
	b. Explain brie		[5]	1	L2										
3.	Describe the f		[10]	1	L2										
	Consequences	and													
	Column family														
4.	Explain graph	and schemal	ess database	s with a neat di	agrar	n			[10]	1	L2				
5.	Identify the ty	pe of conflient	ct in the foll	lowing scenaric	: Ma	rtin and Pram	od share a co	ommon	[10]	2	L3				
	Google sheet of														
	On the other h	and, Pramod	updates the	sheet and saves	the f	ile. The conter	nt updated by	Martin							
	overwritten by	Pramod. Th	e data updat	ed by Martin is	lost.	Apply suitable	e technique								
	of consistency	in solving th	ne above con	flict to handle t	he N	oSQL database	e .								
6.	Explain single	e server, mast	er slave and	peer to peer dis	tribu	tion models			[10]	2	L2				

Faculty Signature

CCI Signature

HOD Signature

٦

USN					* * CELEBRAN		S CN	1RI	т			
			Tratarina	1 OCT 20/	ACC	REDITED W	TECHNOLOGY, E	ENGALUI	RU.			
			Interna	1 – OCT 202	24	1						
Sub:	NOSQL DA	TABASE		Sub Code:	21CS745 Branch:			ISE	C			
Date:	15/10/2024	Duration:	90 min	Max Marks:	50	Sem/Sec:	VII/	A, B &	С	0]	BE	
	MARKS	СО	RBT									
1.	1. What is NOSQL? Explain briefly about aggregate data models with, Considering example of											
	Relations and											
2.	a. Briefly desc	[5]										
	b. Explain brie		[5]	1	L2							
3.	Describe the f	ollowing wit	th reference t	o aggregate dat	a mo	dels:			[10]	1	L2	
	Consequences	of Aggrega	te Orientation	n, Document da	ta mo	odel, Key-valu	e data model	and				
	Column family	y stores.										
4.	Explain graph	and schema	less database	es with a neat di	agrar	n			[10]	1	L2	
5.	Identify the ty	pe of confli	ct in the foll	lowing scenario	o: Ma	rtin and Pram	od share a co	ommon	[10]	2	L3	
				lartin updates tl								
			*	sheet and saves			1 2	Martin				
				ed by Martin is								
				flict to handle t			е.					
6.	Explain single	server, mas	ter slave and	peer to peer dis	stribu	tion models			[10]	2	L2	