
1-a) NoSQL stands for "Not Only SQL" and refers to a broad category of database systems
designed to handle unstructured, semi-structured, or structured data in ways that traditional
relational databases (RDBMS) cannot. NoSQL databases are more flexible, scalable, and
designed to handle massive amounts of data across distributed architectures.

● Types of NoSQL databases:
○ Document-based (e.g., MongoDB, CouchDB)
○ Key-value stores (e.g., Redis, DynamoDB)
○ Column-family stores (e.g., Cassandra, HBase)
○ Graph databases (e.g., Neo4j, ArangoDB)

● Advantages:
○ Scalability (horizontal scaling is easier)
○ Schema flexibility (can store semi-structured and unstructured data)
○ High performance for certain use cases like big data and real-time analytics

● Disadvantages:
○ Lack of standardization
○ Complex query capabilities compared to SQL-based systems



○ Potential consistency issues (CAP theorem)

b) An aggregate data model in NoSQL is a model where data is stored and retrieved as
collections of related items grouped together, rather than using relational tables with joins. This is
commonly used in document-based databases like MongoDB, where a single document can store
an entire set of related data.

Relational Data Model Example:

● In a Relational Database (RDBMS), we might have tables like Orders, Customers, and
Products:

○ Customers: CustomerID, Name, Email
○ Orders: OrderID, CustomerID, ProductID, Quantity
○ Products: ProductID, ProductName, Price

● These tables would use foreign keys to establish relationships between them, and you'd use JOIN
operations to retrieve all relevant data for a customer’s order.

In an Aggregate Data Model (e.g., in MongoDB), the same data might be represented in a single "Order"
document that contains embedded documents for Customer and Products:
json
Copy code
{
"_id": 123,
"customer": {
"customer_id": 1,
"name": "John Doe",
"email": "john.doe@example.com"

},
"items": [
{
"product_id": 101,
"product_name": "Laptop",
"quantity": 2,
"price": 500

},
{
"product_id": 102,
"product_name": "Mouse",
"quantity": 1,
"price": 25

}
],
"order_date": "2024-10-12"

}

● In this model, the order document aggregates both customer and product details in a single
document, which makes it easier to retrieve all data about an order in a single query. No JOIN
operations are necessary in aggregate data models.



2-a) Materialized View: A materialized view is a precomputed view that stores the results of a
query physically on disk. This view is refreshed periodically or manually, depending on the system,
which means it can be faster to query than a standard view since it doesn't require recomputing
the result each time it's accessed.

● Difference from Views:
○ Views: A view is a virtual table that is defined by a query. The data in a view is not stored

physically, and every time you query a view, the underlying query is executed.
○ Materialized Views: Data is stored and updated periodically. Querying a materialized view

does not require re-executing the query; instead, the stored data is retrieved.

b) Two approaches to implement materialized views:

1. Pre-aggregation Approach:
○ You can define a materialized view to store daily aggregates of stock prices, volumes, and

trends. This would involve aggregating data for each stock per day (e.g., average price, total
volume, etc.) into a materialized view.

Example:
sql
Copy code
CREATE MATERIALIZED VIEW daily_stock_trends AS

SELECT stock_id,

DATE(transaction_date) AS date,

AVG(price) AS average_price,

SUM(volume) AS total_volume

FROM stock_transactions

GROUP BY stock_id, DATE(transaction_date);

2.
○ This view would store the results of the aggregation, and it would be updated daily. The

advantage is that querying the materialized view for stock trends would be much faster than
recalculating these aggregates every time.

3. Incremental Update Approach:
○ Instead of recalculating the entire dataset each time, the materialized view could be

incrementally updated with new data. For example, each time new stock transactions are
added, only the relevant portions of the materialized view are updated.

Example:
sql
Copy code
CREATE MATERIALIZED VIEW daily_stock_trends

REFRESH FAST ON COMMIT

AS

SELECT stock_id,



DATE(transaction_date) AS date,

AVG(price) AS average_price,

SUM(volume) AS total_volume

FROM stock_transactions

GROUP BY stock_id, DATE(transaction_date);

4.
○ In this case, every time a new transaction is committed, the view would update

incrementally, which could be more efficient than recalculating the entire dataset.

3.

1. Key-Value Model:
○ Structure: Simple structure where each entry consists of a key and a value. The value could

be anything, from a string, a number, or a more complex data structure like JSON or binary
data.

○ Examples: Redis, DynamoDB
○ Use Cases: Best for storing data where fast retrieval by a unique key is required. Examples

include caching, session storage, and user preferences.
2. Example:

○ Key: user123
○ Value: { "name": "John Doe", "email": "john.doe@example.com", "age":

30 }
3. Document Model:

○ Structure: Stores data as documents, typically in JSON or BSON format. Each document
is a set of key-value pairs, but unlike key-value models, documents can be complex and
nested.

○ Examples: MongoDB, CouchDB
○ Use Cases: Suitable for more complex or semi-structured data where relationships between

data entities are embedded in documents, and schema flexibility is needed.
4. Example:

○ Document:

json
Copy code
{

"_id": 123,

"customer": { "name": "John Doe", "email": "john.doe@example.com" },

"order": [

{ "product": "Laptop", "price": 500, "quantity": 2 },

{ "product": "Mouse", "price": 25, "quantity": 1 }

]

}



5.

b)

1. Key-Value Model:
○ Effective Scenario: When the application needs to store and retrieve data very quickly by a

unique key. Key-value stores are ideal for use cases that require high-speed lookups and do
not require complex querying.

○ Example: Caching user session data for a website. A session can be identified by a unique
session ID, and its data (such as user preferences or authentication tokens) can be stored
as a value in a key-value store.

2. Document Model:
○ Effective Scenario: When the data is semi-structured or nested and the relationships

between entities can be represented within a single document. Document stores are useful
when each "record" can vary in structure or when dealing with complex objects.

○ Example: E-commerce platform where each product has various attributes (price,
description, reviews, etc.) that might change from one product to another. Instead of using a
rigid schema, a document store allows storing different attributes for different products
flexibly.

4. Master-Slave Replication:

In a master-slave replication setup:

● The master node is the authoritative source of data, where all write operations (INSERT, UPDATE,
DELETE) occur.

● The slave nodes replicate the data from the master and can be used to handle read operations
(SELECT queries).

This setup can effectively address the challenges of data availability and scalability, particularly for
high-traffic systems like an e-commerce website.

Implementation:

1. Replication Setup:
○ You configure one database server as the master and several database servers as slaves.
○ Each time a change is made to the master database, those changes are propagated to the

slave databases. This ensures that the data on the slaves is always up-to-date with the
master.

2. Read and Write Distribution:
○ Writes: All data write operations (e.g., placing an order, updating product inventory) are

handled by the master node.
○ Reads: For queries like viewing product details, listing products, user profiles, and browsing

categories, the read traffic is distributed across multiple slave nodes, thus offloading the
master server and improving the overall system’s scalability.

3. Replication Lag:
○ Depending on the replication method (synchronous or asynchronous), there may be a slight

delay in propagating changes from the master to the slaves. However, this is typically
manageable if read operations can tolerate eventual consistency.

Benefits of Master-Slave Replication in E-Commerce:

1. Scalability:
○ Horizontal Scaling: By adding more slave nodes, you can handle more read traffic, which is

especially important during peak hours (e.g., holiday sales, flash sales, or promotions).



○ Distributed Load: This balances the database load, ensuring that the master database is
not overwhelmed with read requests.

2. Improved Availability:
○ Fault Tolerance: If a slave node goes down, the system can continue to serve read

requests from the remaining slave nodes. Additionally, if the master fails, a slave can be
promoted to master, reducing downtime.

○ High Availability: Users can still browse the website, view product details, and place orders
(write operations) as long as the master is operational.

3. Reduced Latency:
○ Local Reads: By placing slave nodes in geographically distributed regions (such as multiple

data centers), you can reduce read latency for users across different regions, improving
response time for browsing product catalogs, user profiles, etc.

Concrete Example in E-Commerce Platform:

Imagine an e-commerce website with a catalog of products and a shopping cart. During a flash sale,
hundreds of thousands of users are accessing the site simultaneously.

● Master Node: Handles all write operations such as updating the inventory when an order is placed
or when stock levels are updated.

● Slave Nodes: Handle read operations like fetching product details, displaying product images, and
listing products for browsing. This reduces the load on the master node.

During the sale:

● As users browse products and add items to their carts, the slave nodes handle the majority of the
requests, ensuring the website remains responsive despite the high traffic.

● Write-heavy operations such as updating the inventory after an order is placed are handled by the
master node, but since write operations are less frequent than read operations, this ensures that
the system remains efficient.

5-a) Significance of Consistency in Database Systems

Consistency in database systems ensures that a database remains in a valid state after every transaction.
The principle guarantees that any transaction will bring the database from one valid state to another, and
that no partial or inconsistent data will be visible to users.

In distributed databases, consistency is crucial because it ensures that all nodes in the system have the
same data after a transaction, preventing issues like reading outdated or partial data. Without consistency,
users could end up seeing stale or incorrect data, which is especially problematic for transactional systems
like e-commerce, where order details, inventory counts, and user balances must always be accurate.

For example, in an e-commerce platform, if consistency is not maintained, a user could place an order
for an item that has already been sold out, leading to customer dissatisfaction and operational issues.

b) Types of Consistency

1. Strong Consistency:
○ Every read will return the most recent write. This is the highest level of consistency.
○ Example: If a product's stock level is updated, any subsequent read will immediately reflect

the new stock level.
○ Drawback: Can cause delays, as the system needs to ensure that all nodes are

synchronized before a read operation.
2. Eventual Consistency:

○ The system will eventually reach consistency, but in the interim, some reads might return
outdated data.



○ Example: In an e-commerce site, if inventory data is replicated across multiple servers, a
customer might see an out-of-stock item as available until the replication process updates all
the servers.

○ This is typically used in NoSQL systems where performance and availability are prioritized
over immediate consistency.

3. Causal Consistency:
○ Ensures that operations that are causally related are seen by all nodes in the same order.

Non-causally related operations may be seen in different orders on different nodes.
○ Example: If a customer places an order, then adds an item to their cart, the second action

should always be seen after the first one. However, other unrelated actions can be seen in
different orders.

4. Read-after-Write Consistency:
○ Guarantees that a read operation will always return the result of the most recent write for a

given item.
○ Example: If a product's price is updated, any read operation for that product will immediately

return the updated price.

6-a) The CAP theorem, proposed by Eric Brewer, states that a distributed database system can provide at
most two of the following three guarantees:

1. Consistency: Every read operation will return the most recent write (or an error).
2. Availability: Every request (read or write) will receive a response (either success or failure).
3. Partition Tolerance: The system can continue to operate even if network partitions or failures

occur, i.e., parts of the system are unable to communicate with each other.

b) Three Properties That Cannot Be Simultaneously Guaranteed

According to the CAP theorem, it's impossible for a distributed system to guarantee all three properties
(Consistency, Availability, and Partition Tolerance) simultaneously. You must prioritize two properties at the
expense of the third:

1. Consistency and Availability (CA):
○ The system guarantees both consistency and availability, but partition tolerance is not

provided. In the case of a network partition, the system might stop serving requests.
○ Example: Traditional relational databases (RDBMS) like MySQL often prioritize consistency

and availability, but they may struggle in partitioned environments.
2. Consistency and Partition Tolerance (CP):

○ The system guarantees consistency even in the case of network partitioning, but it might
sacrifice availability. In the case of a partition, the system might not respond to requests at
all.

○ Example: Some systems like HBase prioritize consistency and partition tolerance, but during
a partition, they may block read/write operations.

3. Availability and Partition Tolerance (AP):
○ The system guarantees availability and partition tolerance, but it may not guarantee

consistency. The system can respond to requests even if the data is not consistent across all
nodes.

○ Example: Many NoSQL systems (like Cassandra or MongoDB) prioritize availability and
partition tolerance but might allow data inconsistencies during network partitions.

Application to NoSQL Systems:

NoSQL databases often operate under the assumption that partition tolerance is critical due to their
distributed nature, especially in cloud environments where network partitions can occur frequently. Hence,
many NoSQL systems favor availability and partition tolerance (AP), but may relax consistency under
certain conditions. For example:



● Cassandra: Prioritizes availability and partition tolerance, allowing eventual consistency.
● MongoDB: Offers configurable consistency levels but also prioritizes availability and partition

tolerance.


