

US	N									100 + CMR	NSTITUTE OF TECHNOLO	MRIT
-			Internal A	Assessment Test	1 – 1	November 2	024					
Sub:	Operat	ing Systems				Sub Code:	BCS303	Bra	unch:	ISE		
Date:	11/11/	2024 Dura	ation: 90 min's	Max Marks:	50	Sem/Sec:	III A, B & C				OE	ЗE
			Answer any FIV	E FULL Questi	<u>ons</u>				MA	RKS	CO	RBT
1.a	Different	tiate between r	nultiprogramming, m	ultiprocessing an	nd m	ultitasking s	ystems.			6	CO1	L1
1.b	Explain a	about any two	operating systems that	at are currently do	omi	nating mobil	e computing			4	CO1	L2
2			ration in Operating S	System and illustr	rate	the transition	n between them	with		10	CO1	L2
		k diagram.										
3	Explain	process states	with state transition d	liagram. Also exp	olain	PCB with a	neat diagram			10	CO2	L2
4		Process	Arrival Time	Burst Time	P	riority				10	CO2	L3
		P1	4	9		3						
		P2	3	7		1						
		P3	0	5		0						
		P4	2	4		2						
	For each	scheduling al	gorithm, FCFS, SJF	(non-preemptive)), P1	iority (sma	ler priority numb	ber				
			ng priority) and RR (
			Chart b. Calculate	Average Turn Ar	oun	d Time and A	Average Waiting					
		Time										
			ithm performs better									
5 a			dels of Multi-threadi	0						6	CO2	L2
5 b			Message Passing and							4	CO2	L1
6 a			ss synchronization iss					code.		6	CO3	L3
6 b	Explain a	all necessary c	onditions to ensure th	ne solution to Crit	tical	Section Pro	blem.			4	CO3	L2

CI

ССI

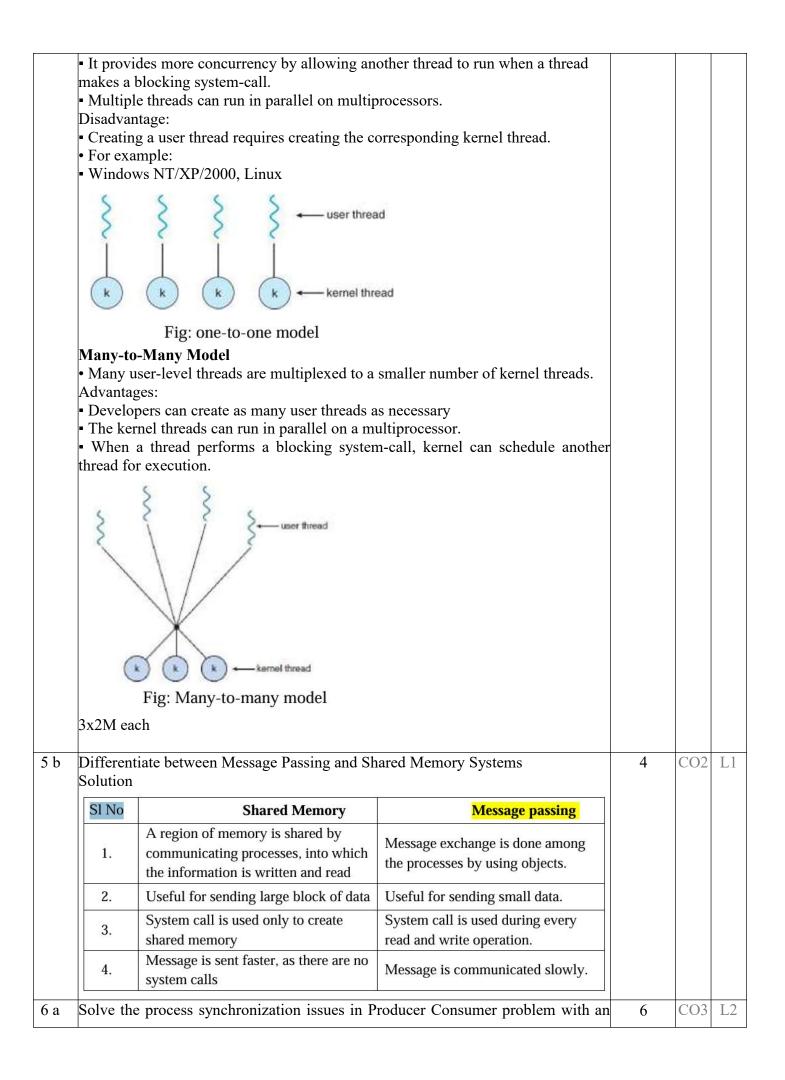
HOD

USN								
				Inte	rnal /	Asses	smen	t Test 1 – November 2024

				Internal A	Assessment Tes	ι Ι - Ι	NOVEIHUEI 20.	24					
Sub:	Operat	ing System	S				Sub Code:	BCS303	Bran	ch:	ISE		
Date:	/11/2	024 D	uration:	90 min's	Max Marks:	50	Sem/Sec:	III A, B & C				OE	BE
				· · · · ·	<u>'E FULL Ques</u>					MA	RKS	CO	RBT
1.a	Different	tiate betwee	n multipr	ogramming, m	nultiprocessing	and m	ultitasking sy	stems.			6	CO1	L1
1.b	Explain a	about any tv	vo operat	ing systems the	at are currently	domi	nating mobile	computing			4	CO1	L2
2		dual mode o k diagram.	peration	in Operating S	System and illus	strate	the transition	between them	with	1	0	CO1	L2
3	Explain	process state	es with st	ate transition d	liagram. Also ez	xplain	PCB with a 1	neat diagram		1	0	CO2	L2
4										1	0	CO2	L3
		Process	Arriv	al Time	Burst Time	P	riority						
		P1		4	9		3						
		P2		3	7		1						
		P3		0	5		0						
		P4		2	4		2						
	implies l a. b.	ower schedu Draw a Gar Calculate	uling pric att Chart Average 7	ority) and RR	(non-preemptiv (quantum = 3), Time and Averag in this case.	do th	e following	er priority numb	ber				
5 a	Explain t	the various i	nodels of	f Multi-threadi	ng with one Pro	os and	Cons.				6	CO2	L2
5 b					Shared Memory						4	CO2	L1
6 a	Demonst	rate the pro	cess sync	hronization is	sues in Produce	r Con	sumer problem	n using pseudoo	code.		6	CO3	L3
6 b	Explain a	all necessary	v conditio	ons to ensure th	ne solution to C	ritical	Section Prob	lem.			4	CO3	L2

HOD

USN


			Internal As	ssessment Tes	t 1 –	November	2024	•				
Sub:	Operating \$	Systems				Sub Code:	BCS303	Bran	ch :	ISE		
Date:	11/11/2024	Duration:	90 min's	Max Marks:	50	Sem/Sec :	III A, B & O	С			OB	BE
		Answ	ver any FIV	/E FULL Qu	estio	ons				RK S	СО	RB T
1.a	systems. Solution Multiprogra busy at all tin so that the Cl Multitasking executes mu frequently th user feels tha Multiproces 1) Asym proce alloca 2) Symm peers. own r	between m mming: A nes. Multip PU always l PU always l PU always l Systems • Itiple jobs at the users t all the pro	ultiprogram single user rogramming has one to e 512M nory layout In Time sh by switchis can intera ograms are b GPU ns ultiprocessing inforcessing of the slave p iprocessing of CPU, only	ming, multipr cannot keep of g increases Cl xecute. operating system job 1 job 2 job 3 job 4 for a multipro- naring (or mul- ing among th ct with each p being executed 	oces eithe: PU u ograr lititas nem, progra l at the in the	nming syste tilization by nming syste tilization by but the sy ram while in ceru ve architec master prone system. e processor All the processor a.	em ms, a single witches occu it is running. ture) Here cessor. A m It schedules are considered construction of the second second of the second ture of ture of ture of ture of ture of ture of ture ture of ture of ture of ture of ture of ture of ture of ture ture of ture of tur	cPU r so The each aster and lered their		4	CO1	T L1
	computing Solution											

	Android Operating System Android is an open-source mobile OS developed by Google and launched in 2008. Android is a Linux-based OS that uses Linux 2.6 to provide core services such as security, <u>memory management</u> , process management, network stack, and a driver model. It offers a wide range of libraries that enable the app developers to build different applications. <u>Android applications</u> are usually written in <u>Java programming language</u> . Apple iOS Apple iOS Apple iOS is a closed-source code mobile phone OS developed by Apple in 2007; it is used by Apple-only products (iPhone, iPod, and iPad). The iOS architecture is based on three layers incorporated with each other. Cocoa touch is a layer that provides some basic infrastructure used by applications. The second layer is the media layer, which provides audio services, animation video, image formats, and documents in addition to providing two-dimensional (2D) and 3D drawings and audio and video support. The third layer is the core OS, which provides core services such as low-level data types, start-up services, network connection, and access 2x2M each			
2	Explain dual mode operation in Operating System and illustrate the transition between them with neat block diagram. Solution: Since the operating system and the user programs share the hardware and software resources of the computer system, it has to be made sure that an error in a user program cannot cause problems to other programs and the Operating System running in the system. The approach taken is to use a hardware support that allows us to differentiate among various modes of execution. The system can be assumed to work in two separate modes of operation: 1. User mode 2. Kernel mode (supervisor mode, system mode, or privileged mode). A hardware bit of the computer, called the mode bit, is used to indicate the current mode: kernel (0) or user (1). With the mode bit, we are able to distinguish between a task that is executed by the operating system and one that is executed by the user. • When the computer system is executing a user application, the system is in user mode. When a user application requests a service from the operating system (via a system call), the transition from user to kernel mode. Figure Transition from user to kernel mode. SM: Diagram 5M explanation	10	CO1	L2
3	Explain process states with state transition diagram. Also explain PCB with a neat	10	CO2	L2
	diagram Solution A process is a program which is currently in execution.			

A process also includes the process stack, which contains temporary data (such as			
local variables, function parameters, return address), and a data section, which			
contains global variables and a heap-memory allocated to a process to run and			
process state that defines its current state.			
A process changes its state during its execution. Each process may be in one of the	;		
following states:			
1. New: when a new process is being created.			
2. Running: A process is said to be in running state when instructions are being			
executed.			
3. Waiting: The process is waiting for some event to occur (such as an I/O opn.).			
4. Ready: The process is waiting for processor.			
5. Terminated: The process has finished execution.			
admitted interrupt exit			
New Interrupt terminated			
ready			
I/O or event completion			
Waiting			
Process State Diagram			
Process Control Block (PCB):			
Operating system maintains one special data structure called Process Control			
Block (PCB).			
All the information about each process is stored in the process control block			
1 1			
(PCB) which is maintained by operating system. It contains following information			
associated with a specific process.			
• Process state: It represents current status of the process. It may be new, ready,			
running or waiting.			
Program counter: It indicates the address of the next instruction to be executed for	•		
this process.			
• CPU Registers: They include index registers, stack pointer and general purpose			
registers. It is used to save process state when an interrupt occurs, so that it can			
resume from that state.			
• CPU-scheduling information: it includes process priority, pointer to scheduling			
queue.			
 Memory management information: value of the base and limit registers, page 			
tables depending on the memory system.			
 Accounting information: it contains an amount of CPU and real time used, time 			
limits process number and so on.			
• I/O status information: It includes a list of I/O devices allocated to the process, a			
list of open files and so on.			
• Normally, operating system stores PCBs of processes into the ready queue for the			
process scheduling instead of the process itself.			
2M Diagram			
4M Explanation on state diagram			
2M PCB contents listing			
2M explanation on PCB	3		
FCFS, SJF, RR, Priority	10	CO2	L1
Solution	-		-
	1		

FCFS, SJF, RR, Priority Process Solution AT BT Priority 10 CO2 LI P 4 9 3 P2 3 7 1 P3 0 5 0 Pt 2 4 2 FCFS PA P3 A W.T = 5-25 P2 P, A -TAT = 11. 5 -5 0 9 16 25 SJF Pq A WT = 5.25 P, P3 P2 A TAT = 11.5 0 4 9 16 25 PRIORITY : A.W.T = 10.5 P, P4 P2 P3 ATAT = 16.75 0 9 13 20 25 ROUND ROBIN : PA P2 P1 P2 P3 | P4 P2 P3 P1 P, 0 3 6 9 12 14 15 18 21 22 25 A.KI.T= 9.75 A. TA+ = 16 FCFS & SJF algorithm performs well in this cale. Shot on OnePlus Poornima Manjunath | 22 November 2024 at 11:31

5 a	Explain the various models of Multi threading with one Pros and Cons.	6	CO2	L2
	 Solution: Various models of Multi threading: Many-to-one model 2. One-to-one mode and 3. Many-to-many model. Many-to-One Model Many user-level threads are mapped to one kernel thread. Advantages: Thread management is done by the thread library in user space, so it is efficient. Disadvantages: The entire process will block if a thread makes a blocking system-call. Multiple threads are unable to run in parallel on multiprocessors. For example: Solaris green threads GNU portable threads. 			
	Fig: Many-to-one model			
	One-to-One Model • Each user thread is mapped to a kernel thread. Advantages:			

example using rele	evant pseudocodes.		
Solution Broducer Consum	on Example Using Shared Manager		
	ner Example Using Shared Memory		
	example, in which one process is producing data and another		
process is consumined.	ed via an intermediary buffer (shared memory). The producer		
1	buffer and the consumer takes out the data from the buffer. A		
1	uce one item while the consumer is consuming another item.		
r	consumer must be synchronized, so that the consumer does not		
1 1	item that has not yet been produced. In this situation, the		
	it until an item is produced.		
	es of buffers into which information can be put –		
 Unbounded buffer 	-		
Bounded buffer	-		
• With Unbounded	buffer, there is no limit on the size of the buffer, and so on the		
	roducer. But the consumer may have to wait for new items.		
	ffer – As the buffer size is fixed. The producer has to wait if the		
	e consumer has to wait if the buffer is empty.		
The producer proc			
	er is full when [(in+1) % BUFFER_SIZE == out]		
	anna an		
item	nextProduced;		
while	e (true) {		
	<pre>/* produce an item in nextProduced */ while (((in + 1) % BUFFER-SIZE) == out)</pre>		
	<pre>while (((in + 1) * BOFFER-SIZE) == Out) ; /* do nothing */</pre>		
	<pre>buffer[in] = nextProduced;</pre>		
	<pre>in = (in + 1) % BUFFER SIZE;</pre>		
}			
,	Figure The producer process.		
The consumer pro	Cess -		
	er is empty when [in == out]		
	nan ana ana ana ana ana ana ana ana ana		
item	nextConsumed;		
	(true) {		
	while (in == out)		
	; //do nothing		
	nextConsumed = buffer[out];		
	out = (out + 1) % BUFFER_SIZE;		
	/* consume the item in nextConsumed */		
}			
,	Figure The consumer process.		
	Pseudo Code: 3M		
	Explanation: 3M		
Explain all necessa	ry conditions to ensure the solution to Critical Section Problem.	4	CO3
Solution:		-	
A solution to the	e critical-section problem must satisfy the following three		

1. Mutual exclusion: If process Pi is executing in its critical section	n, then no other
processes can be executing in their critical sections.	
2. Progress: If no process is executing in its critical section and	l some processes
wish to enter their critical sections, then only those process	ses that are not
executing in their remainder sections can participate in deciding	which will enter
its critical section next, and this selection cannot be postponed ind	efinitely.
3. Bounded waiting: There exists a bound, or limit, on the num	ber of times that
other processes are allowed to enter their critical sections after a p	process has made
a request to enter its critical section and before that request is gran	ted.
	Explanation: 4M