

Roll

No.

Internal Assessment Test 1 – Nov 2024

Sub:
Data Structures and Applications - Solutions and Scheme

Sub code: BCS304 Branch: ISE

Date: 07-11-2024 Duration: 90 min’s Max Marks: 50 Sem / Sec: III / A,B,C OBE

Answer any FIVE FULL QUESTIONS MARKS CO RBT

 1 (a) Define Data Structures. Classify them with a diagram and examples.

Marks Distribution:

 Definition: 1 Mark

 Classification Diagram: 2 Marks

 Explanation with Examples: 2 Marks

Answer:

Data Structures are specialized formats for organizing, processing, retrieving, and

storing data. They allow for efficient data management and support different types

of data operations.

Classification of Data Structures:

Data structures can be classified into two main categories:

1. Primitive Data Structures

2. Non-Primitive Data Structures

Data Structures

|
--

| |

Primitive Data Structures Non-Primitive Data Structures
|

| |
Linear Data Structures Non-Linear Data Structures

| |

---------------------------- -------------------------

| | | | |
Array Linked Stack Tree Graph

List Queue

 Primitive Data Structures: Examples include int, char, float, etc.

 Non-Primitive Data Structures: Can be further classified as:

o Linear Data Structures: Array, Linked List, Stack, Queue

Non-Linear Data Structures: Trees, Graphs

 5 CO1 L2

 (b) Program in C for Pattern Matching: Find and Replace all occurrences

of PAT in STR with REP.

Marks Distribution:

 Logic for Pattern Matching: 2 Marks

 Replace Operation: 2 Marks

 Message if Pattern Not Found: 1 Mark

Answer:

#include <stdio.h>

#include <string.h>

void findAndReplace(char *str, char *pat, char *rep) {

 char buffer[1000];

 char *pos;

 int index = 0;
 int patLen = strlen(pat);

 int repLen = strlen(rep);

 int found = 0;

 buffer[0] = '\0'; // Initialize buffer to an empty string

 // Loop to find and replace all occurrences

 while ((pos = strstr(str, pat)) != NULL) {

 found = 1;

 // Copy characters from the start of str to the start of pattern
 strncpy(buffer + index, str, pos - str);

 index += pos - str;

 // Copy replacement into buffer

 strcpy(buffer + index, rep);

 index += repLen;

 // Move str to after the last replaced pattern

 str = pos + patLen;

 }

 if (!found) {

 printf("Pattern not found.\n");
 } else {

 strcpy(buffer + index, str); // Copy the remaining part of str

 printf("Updated String: %s\n", buffer);

 }
}

int main() {
 char str[100] = "hello world, world of programming!";

 char pat[10] = "world";

 char rep[10] = "earth";

 printf("Original String: %s\n", str);

 findAndReplace(str, pat, rep);

 5 CO1 L3

 return 0;
}

2 (a) Define Stack. Implement push(), pop(), and display() with full and

empty conditions.

Marks Distribution:

 Stack Definition: 1 Mark

 push() Implementation: 2 Marks

 pop() and display() Implementations: 2 Marks

Answer:

Definition: A Stack is a linear data structure that follows the LIFO (Last In First

Out) principle.

#include <stdio.h>

#define MAX 5

int stack[MAX];
int top = -1;

void push(int value) {
 if (top == MAX - 1) {

 printf("Stack Overflow\n");

 } else {
 stack[++top] = value;

 }

}

int pop() {

 if (top == -1) {

 printf("Stack Underflow\n");
 return -1;

 } else {

 return stack[top--];

 }
}

void display() {
 if (top == -1) {

 printf("Stack is empty\n");

 } else {
 printf("Stack elements:\n");

 for (int i = top; i >= 0; i--) {

 printf("%d\n", stack[i]);

 }
 }

}

int main() {

 push(10);

 push(20);
 display();

5 CO2 L3

 printf("Popped element: %d\n", pop());
 display();

 return 0;

}

 (b) Rules to Convert Infix to Postfix & Example Conversion

Marks Distribution:

 Conversion Rules: 3 Marks

 Example Conversion: 2 Marks

Answer:

Rules to Convert Infix to Postfix:

1. Operands go directly to the output.

2. Operators are pushed onto a stack.

3. Parentheses:

o ‘(’ is pushed to the stack.

o ‘)’ causes stack pop until ‘(‘ is encountered.

4. Operators of higher precedence are pushed first.

5. When the expression ends, pop all operators from the stack.

Example:

For the expression: A * (B * C + D * E) + F

The Postfix conversion is: ABC*DE*+*F+

5 CO2 L2

3 (a) C Functions to Add Two Polynomials (Using Linked Lists)

Marks Distribution:

 Linked List Representation: 2 Marks

 Code for Addition of Polynomials: 3 Marks

Answer:

For adding polynomials:

 Use linked lists to represent the terms.

 Traverse both lists to sum terms with the same exponents.

#include <stdio.h>

#include <stdlib.h>

typedef struct PolyNode {
 int coeff;

 int exp;

 struct PolyNode *next;
} PolyNode;

5 CO2 L3

PolyNode* createNode(int coeff, int exp) {

 PolyNode* newNode = (PolyNode*)malloc(sizeof(PolyNode));

 newNode->coeff = coeff;

 newNode->exp = exp;
 newNode->next = NULL;

 return newNode;

}

PolyNode* addPoly(PolyNode* p1, PolyNode* p2) {

 PolyNode* result = NULL;

 PolyNode** ptr = &result;

 while (p1 && p2) {

 if (p1->exp > p2->exp) {
 *ptr = createNode(p1->coeff, p1->exp);

 p1 = p1->next;

 } else if (p1->exp < p2->exp) {
 *ptr = createNode(p2->coeff, p2->exp);

 p2 = p2->next;

 } else {

 *ptr = createNode(p1->coeff + p2->coeff, p1->exp);
 p1 = p1->next;

 p2 = p2->next;

 }
 ptr = &((*ptr)->next);

 }

 while (p1) {

 *ptr = createNode(p1->coeff, p1->exp);

 p1 = p1->next;

 ptr = &((*ptr)->next);
 }

 while (p2) {
 *ptr = createNode(p2->coeff, p2->exp);

 p2 = p2->next;

 ptr = &((*ptr)->next);

 }

 return result;

}

 (b) Define Abstract Data Type (ADT) and Explain Queue ADT

Marks Distribution:

 ADT Definition: 2 Marks

 Explanation of Queue ADT: 3 Marks

Answer:

5 CO2 L2

An Abstract Data Type (ADT) is a model defined by a set of values and

operations on those values. ADTs provide only the interface, hiding implementation

details.

Queue ADT:

 A linear structure following FIFO (First In First Out).

 Operations:

o enqueue(): Add element to the rear.

o dequeue(): Remove element from the front.

o peek(): Access front element.

4 (a) Develop a C program to implement insertion, deletion and display operations on

linear queue.

Marks Distribution:

 Syntax – 2 marks

 Functions – 3 marks (Each 1 mark)

Answer:

#include<stdio.h>

#include<stdlib.h>

#define MAXSIZE 10

int Q[MAXSIZE],front=-1,rear=-1;

void qinsert(int x)

{

 if(rear==MAXSIZE-1)

 printf("\n Queue is Full.");

 else if(front==-1)

 {

 front=0;

 rear=0;

 Q[front]=x;

 }

 else

 {

 rear++;

 Q[rear]=x;

 }

}

void qdelete()

{

 if(front==-1)

 printf("\n Queue is Empty.");

 else if(front==rear)

 {

 printf("\n %d is removed from Queue.",Q[front]);

 front=-1;

5 CO2 L3

 rear=-1;

 }

 else

 {

 printf("\n %d is deleted from Queue.",Q[front]);

 front++;

 }

}

void display()

{

 int i;

 printf("\n The Queue elements are...\n");

 if(front==-1)

 printf("\n No elements in Queue.");

 else

 {

 for(i=front;i<=rear;i++)

 printf(" %d ",Q[i]);

 }

}

int main()

{

 int choice,x;

 while(1)

 {

 printf("\n 1.Data insert\n 2.Data Delete\n 3.Data Display\n 4.Exit");

 printf("\n Please, Enter your choice : ");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1: printf("\n Please, Enter the element : ");

 scanf("%d",&x);

 qinsert(x);

 break;

 case 2: qdelete();

 break;

 case 3: display();

 break;

 case 4: exit(0);

 default : printf("\n wrong Choice.");

 }

 }

}

 (b) What is Linked list? Explain the Different types of Linked list with a neat diagram.

 Marks Distribution:

 Definition – 2 marks
 Types with diagram – 3 marks

5 CO3 L2

Answer:

A linked list is a linear data structure, in which the elements are not stored at
contiguous memory locations. The elements in a linked list are linked
using pointers. In simple words, a linked list consists of nodes where each node
contains a data field and a reference (link) to the next node in the list.

Types Of Linked Lists:

1. Singly Linked List
2. Doubly Linked List
3. Singly Circular Linked List
4. Doubly Circular linked list

Singly Linked List

Singly linked list is the simplest type of linked list in which every node contains
some data and a pointer to the next node of the same data type. The node contains a
pointer to the next node means that the node stores the address of the next node in
the sequence. A single linked list allows the traversal of data only in one way.

Doubly Linked List

A doubly linked list or a two-way linked list is a more complex type of linked list
that contains a pointer to the next as well as the previous node in
sequence. Therefore, it contains three parts of data, a pointer to the next node, and a
pointer to the previous node. This would enable us to traverse the list in the
backward direction as well.

Singly Circular Linked List

A Singly circular linked list is a type of linked list in which the last node’s next
pointer points back to the first node of the list, creating a circular structure. This
design allows for continuous traversal of the list, as there is no null to end the list.

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/singly-linked-list-definition-meaning-dsa/
https://www.geeksforgeeks.org/doubly-linked-list/
https://www.geeksforgeeks.org/circular-linked-list/

Doubly Circular linked list

Doubly Circular linked list or a circular two-way linked list is a complex type of
linked list that contains a pointer to the next as well as the previous node in the
sequence

5 (a) 1. Give the Structure representation of Doubly linked list and write the c function for
following:

i) i) Insert an element at an end of DLL
 ii) Delete a node at the beginning of DLL

Mark Distribution:

 Description and representation: 3 marks

 Function : 2 marks(each one)

Structure of a Doubly Linked List Node:

Each node in a doubly linked list includes:

 Data: The actual information held within the node, which could be numbers,

strings, or any other data type.

 Next Pointer: A reference to the next node in the list, which helps in traversing the
list forward.

 Prev Pointer: A reference to the previous node in the list, which facilitates

backward traversal.

ii) i) Insert an element at an end of DLL

void insert_end()
{

EMPLOYEE node, temp;

node = create();
if (start == NULL) /*If the list is empty.*/

{

start = node;

}
else

{

temp = start;
while (temp->rlink != NULL) /*Traverse till the end of the list.*/

{

temp = temp->rlink;
}

temp->rlink = node; /*Temp's right link is assigned the address of node.*/

node->llink = temp; /*Node's left link is assigned the address of temp.*/

}
}

5 CO3 L3

https://www.geeksforgeeks.org/circular-doubly-linked-list-meaning/

ii) Delete a node at the beginning of DLL

void delete_front()

{
EMPLOYEE temp;

temp = start;

if (temp == NULL) /*If the list is empty.*/

{
printf ("\nList is Empty");

}

else if (temp->rlink == NULL) /*If there is one node in the list.*/
{

printf ("\nThe deleted employee ssn is %s", temp->ssn);

free (temp);
start = NULL;

}

else /*If there are many nodes.*/

{
start = temp->rlink; /*Assign the address of next node which is present in start's right link to

start.*/

start->llink = NULL;

printf ("\nThe deleted employee ssn is %s", temp->ssn);
free (temp);

}

}

 (b) 2. Define sparse matrix. For the given sparse matrix, give the linked list
representation:

Mark Distribution:

 Definition : 2 Marks

 Linked list representation : 3 Marks

Answers:

Sparse Matrix:

A sparse matrix is a matrix in which most of the elements are zero. This type of matrix is

useful in scenarios where storage and computational efficiency are critical, as we can store

only the non-zero elements rather than all elements, including the zeros.

In linked list, each node has four fields. These four fields are defined as:

 Row: Index of row, where non-zero element is located

 Column: Index of column, where non-zero element is located
 Value: Value of the non-zero element located at index – (row,column)

 Next node: Address of the next node

5 CO3 L2

6 (a) Write recursive C functions for in-order, pre-order and post-order traversals of a

binary tree. Also, find all the traversals for the given tree.

4.
Marks Distribution:

 Recursive Function : 3 marks (1 mark each)

 Traversal : 2 marks

Answers:

INORDER:

void inorder(struct Node* root) {

 if (root == NULL)
 return;

 inorder (root->left);

 printf("%d ", root->data);

 inorder (root->right);
}

PRE-ORDER:

void preorder(struct Node* root) {

 if (root == NULL)

 return;
 printf("%d ", root->data);

 preorder (root->left);

 preorder (root->right);
}

POST-ORDER:

void postorder(struct Node* root) {

 if (root == NULL)

 return;
 postorder (root->left);

 postorder (root->right);

 printf("%d ", root->data);
}

5 CO4 L3

inorder - D B H E I A F C G

preorder - A B D E H I C F G

postorder - D H I E B F G C A

 (b) Define Binary Tree. Explain the Types of Binary Tree with a neat diagram.

Marks Distribution:

 Definition: 2 marks

 Types : 3 marks

Answer:

A binary tree is a tree-type non-linear data structure with a maximum of two children for
each parent. Every node in a binary tree has a left and right reference along with the data

element. The node at the top of the hierarchy of a tree is called the root node. The nodes

that hold other sub-nodes are the parent nodes.

A parent node has two child nodes: the left child and right child.

Types of Binary Tree
1. Skewed Binary Trees

2. Complete Binary Trees

3. Full Binary Tree
4. Extended Binary tree

Skewed Binary Trees

A skewed binary tree is a type of binary tree in which all the nodes have only either one

child or no child. There are two types of skewed binary tree: left skewed and right skewed

binary tree.

Complete Binary Trees

A complete binary tree is a special type of binary tree where all the levels of the tree are
filled completely except the lowest level nodes which are filled from as left as possible.

Full Binary Tree

A perfect binary tree or Full Binary tree is a special type of binary tree in which all the

leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms,

5 CO4 L2

this means that all leaf nodes are at the maximum depth of the tree, and the tree is
completely filled with no gaps.

Extended binary tree

Extended binary tree is a type of binary tree in which all the null sub tree of the original tree

are replaced with special nodes called external nodes whereas other nodes are

called internal nodes

 CI CCI HOD

