
Internal Assessment Test 1 – Nov 2024
Solution

Sub Data Structures and Applications Sub code BCS304

Date 07/11/24 Duration 90 mins Max Marks 50 Sem /Sec III A, B&C

Answer any FIVE FULL Questions
1 a) What is data structure? Explain the classifications of Data structures with examples.

Solution:
A data structure is a way of organizing, managing, and storing data in a computer so it can be used
efficiently. Data structures allow data to be arranged in a way that enables easy access, modification,
and processing.

Classification of Data Structures

Data structures can be broadly classified into two main types:

1. Primitive Data Structures
2. Non-Primitive Data Structures

1. Primitive Data Structures

Primitive data structures are the basic data types provided by programming languages, such as
integers, floats, characters, and booleans. These types hold a single value and are usually built into the
language.

2. Non-Primitive Data Structures

Non-primitive data structures are more complex and are used to store multiple values in a single
structure. They are divided into two main categories: linear and non-linear data structures.

A. Linear Data Structures

● Arrays: A collection of elements, each identified by an index or key. Elements are stored in
contiguous memory locations, and all elements are of the same type.

○ Example: [10, 20, 30, 40]
● Linked Lists: A sequence of elements called nodes, where each node contains a value and a

reference to the next node. Unlike arrays, elements are not stored in contiguous memory
locations.

○ Example: 10 -> 20 -> 30 -> 40
● Stacks: A collection of elements that follows the Last-In-First-Out (LIFO) principle. Operations

are performed at only one end of the structure (top of the stack).
○ Example: A stack of plates where only the top plate is accessible.

● Queues: A collection of elements that follows the First-In-First-Out (FIFO) principle. Elements
are added at one end (rear) and removed from the other end (front).

○ Example: A line of people waiting to buy tickets, where the person at the front of the
line is served first.

B. Non-Linear Data Structures

● Trees: A hierarchical data structure consisting of nodes, where each node has a value and
references to child nodes. Trees are commonly used for data that has a natural hierarchy, like
file directories.

○ Example: A binary tree representing a family tree, with each node representing a
family member.

● Graphs: A collection of nodes (vertices) connected by edges. Graphs are used to represent
networks and relationships, such as social networks or web page links.

○ Example: A social network graph where each person is a node, and an edge represents
a friendship.

b) With examples explain pointer declaration, pointer initialization, and void pointer.

Solution:

Pointer Declaration

A pointer is a variable that stores the memory address of another variable. When declaring a pointer, we use an
asterisk (*) before the pointer's name to denote it as a pointer type.

Syntax: data_type *pointer_name;

Example: int *p;

Pointer Initialization

After declaring a pointer, we need to assign it the address of a variable of the same data type using the address-of
operator &.

Example: int x = 10; int *p = &x;

Void Pointer:

A void pointer (also known as a generic pointer) is a special type of pointer that can point to any data type. It is
declared using the void keyword.

Example:

void *vp;

int x = 5;

vp = &x;

2 a)Represent below polynomial using Array and write a C function to perform polynomial
addition:1. 5x3+ 4x2+2x+1 2. 3x3+x2 +4x+7

Solution:
Array Representation of the given polynomials:

Polynomial Addition Function in C:

int addExpressions(int firstCount, int secondCount)
{
int i, j, k;
i = 0;
j = 0;
k = 0;

while(i < firstCount && j < secondCount)
{
if(first[i].exp == second[j].exp)
{
result[k].coeff = first[i].coeff + second[j].coeff;
result[k].exp = first[i].exp;
i++;
j++;
k++;

}
else if(first[i].exp > second[j].exp)
{
result[k].coeff = first[i].coeff;
result[k].exp = first[i].exp;
i++;
k++;

}
else
{
result[k].coeff = second[i].coeff;
result[k].exp = second[j].exp;
j++;
k++;

}
}

while(i < firstCount)
{
result[k].coeff = first[i].coeff;
result[k].exp = first[i].exp;
k++;
i++;

}

while(j < secondCount)
{
result[k].coeff = second[j].coeff;
result[k].exp = second[j].exp;
k++;
j++;

}
return k;

}

b) Evaluate the following postfix expression step by step using stack, based on values

given below for each variable: A B + C D - * E +, Where A= 5, B = 2, C= 4, D

= 3, E = 6.

Solution:

To evaluate the postfix expression AB+CD−∗E+ step-by-step using a stack, let's first

substitute the values of the variables:

● A = 5

● B = 2

● C = 4

● D = 3

● E = 6

So, the expression becomes: 5  2  +  4  3  −  ∗  6  +

Step-by-Step Evaluation

1. Start with an empty stack.

2. Read each element from left to right and perform the following:

○ If the element is a number, push it onto the stack.

○ If the element is an operator, pop the required number of operands from the

stack, perform the operation, and push the result back onto the stack.

Evaluation Steps:

steps Expression Action Stack

1 5 Push 5 onto the stack [5]

2 2 Push 2 onto the stack [5, 2]

3 + Pop 5 and 2, calculate 5

+ 2 = 7, push 7

[7]

4 4 Push 4 onto the stack [7, 4]

5 3 Push 3 onto the stack [7, 4, 3]

6 - Pop 4 and 3, calculate 4

- 3 = 1, push 1

[7, 1]

7 * Pop 7 and 1, calculate 7

* 1 = 7, push 7

[7]

8 6 Push 6 onto the stack [7, 6]

9 + Pop 7 and 6, calculate 7

+ 6 = 13, push 13

[13]

Final Result:

After evaluating the entire expression, the final result is the only value left in the stack, which

is:13

3 a) Explain Knuth Morris Pattern Matching Algorithm with example.

b) For the pattern "aabaabaaa" and the text "aabaacaadaabaabaaa", apply the KMP (Knuth-Morris-Pratt) algorithm
to search for the pattern in the text.

Index: 9
4 a) Define stack. Give the C implementation of push and pop functions. Include a check for empty and full

conditions of a stack.

b). Convert the following infix expression to a postfix expression 1. A+(B*C+D/E)$F

A + (B * C + D / E) ^ F

● Step-by-step conversion:
○ A: Operand → add to output.
○ +: Push onto the stack.
○ (: Push onto the stack.
○ B: Operand → add to output.
○ *: Push onto the stack.
○ C: Operand → add to output.
○ +: Pop * (from the stack) and add to output, then push +.
○ D: Operand → add to output.
○ /: Push onto the stack.
○ E: Operand → add to output.
○): Pop / and add to output, then pop + and add to output, then discard (.
○ ^: Push onto the stack.
○ F: Operand → add to output.

Postfix for A + (B * C + D / E) ^ F: A B C * D E / + F ^ +

2. P*(Q-R)/X * (S + T)^U^V

Step-by-step conversion:

a. P: Operand → add to output.
b. *: Push onto the stack.
c. (: Push onto the stack.
d. Q: Operand → add to output.
e. -: Push onto the stack.
f. R: Operand → add to output.
g.): Pop - and add to output, then discard (.
h. /: Push onto the stack.
i. X: Operand → add to output.
j. *: Push onto the stack.
k. (: Push onto the stack.
l. S: Operand → add to output.
m. +: Push onto the stack.
n. T: Operand → add to output.
o.): Pop + and add to output, then discard (.
p. ^: Push onto the stack.

q. U: Operand → add to output.
r. ^: Push onto the stack (right-to-left associativity).
s. V: Operand → add to output.

Postfix for P * (Q - R) / X * (S + T) ^ U ^ V: P Q R - * X / S T + U V ^ ^ *

5 a) Represent the following matrix in the linked representation form:

b) Write a program in C to implement push and pop operation on a stack of integers using a singly linked list.
push:

6 a) Write C- functions for the following on a Singly linked list of Char data:
1. Insert a node in the beginning of a list
void insert_front(int ele)
{
create_node(ele);
if(first)
temp->next=first;

first=temp;
}

2. delete a node after a node in a list

void delete_node(int ele)
{
ptr=first;
while(ptr->next->data!=ele)
{
ptr=ptr->next;

}
temp=ptr->next;
ptr->next=temp->next;
free(temp);

}

3. display the list.

3. Print a List:
void print_list()
{
for(ptr=first;ptr;ptr=ptr->next)
printf("%d ->",ptr->data);

printf("NULL");
}

4. To reverse the direction of the singly linked list (as shown below)
start

A B C D
start

D C B A
Reverse a List:

void reverse()
{
temp=prev=NULL;
ptr=first;
while(ptr!=NULL)
{
prev=ptr;
ptr=ptr->next;
prev->next=temp;
temp=prev;

}
sec=temp;

}

b) Write a C function to insert a node at 2nd position in DLL.
void insertAtSecondPosition(struct Node** head, int data) {
struct Node* newNode = createNode(data);

// If the list is empty or has only one node
if (*head == NULL || (*head)->next == NULL) {
printf("List has less than 2 nodes. Inserting at the start.\n");
newNode->next = *head;
if (*head != NULL) {
(*head)->prev = newNode;

}
*head = newNode;
return;

}

// Insert the new node at the 2nd position
struct Node* first = *head;
struct Node* second = first->next;

newNode->next = second;
newNode->prev = first;

first->next = newNode;
second->prev = newNode;

}

