Internal Assessment Test Il — December 2024
Solution Ke
Sub: | Software Engineering and Project Management Sub Code:| BCS501 ‘ Branch: | ISE
Date: | 14-12-2024 | Duration: | 90 min’s | Max Marks: |50 | Sem/Sec: | V/A,B&C OBE
Answer any FIVE FULL Questions MARKS co FEI_B
1 Ja.List and briefly explain the special characteristics of a software reflecting on the 5 CO5| L3
importance of its quality.
Solutions: 5

ISO 9126 identifies six major external software quality characteristics:

e functionality, which covers the functions that a software product provides to satisfy user needs;

reliability, which relates to the capability of the software to maintain its level of performance;

usability, which relates to the effort needed to use the software;

efficiency, which relates to the physical resources used when the software is executed;

maintainability, which relates to the effort needed to the make changes to the software;

portability, which relates to the ability of the software to be transferred to a different environment.

‘Functionality compliance’ refers to the degree to which the software adheres to application-related standards
or legal requirements. Typically these could be auditing requirements. Since the original 1999 draft, a
sub-characteristic called ‘compliance’ has been added to all six ISO external characteristics. In each case,
this refers to any specific standards that might apply to the particular quality attribute.

‘Maturity’ refers to the frequency of failure due to faults in a software product, the implication being that the
more the software has been used, the more faults will have been uncovered and removed. It is also interesting
to note that ‘recoverability’ has been clearly distinguished from ‘security’ which describes the control of
access (o a system.

Note how ‘learnability’ is distinguished from ‘operability’. A software tool could be easy to learn but time-
consuming to use because, say, it uses a large number of nested menus. This might be fine for a package used
intermittently, but not where the system is used for many hours each day. In this case ‘learnability’ has been

incorporated at the expense of ‘operability’.

‘Attractiveness’ is a recent addition to the sub-characteristics of usability and is especially important where
users are not compelled to use a particular software product, as in the case of games and other entertainment

products.

b. Use the COCOMO Il model to estimate the effort required to build software for a simple
ATM that produces 12 screens, 10 reports, and will require approximately 80 software
components. Assume average complexity and average developer/environment maturity.

Solution:

26.7.2 The COCOMO II Model

In his classic book on “software engineering economics,” Barry Boehm [Boe81]
introduced a hierarchy of software estimation models bearing the name COCOMO, for
COnstructive COst MOdel. The original COCOMO model became one of the most widely
used and discussed software cost estimation models in the industry. It has evolved into
amore comprehensive estimation model, called COCOMO 11 [Boe00]. Like its predeces-
sor, COCOMO I1 is actually a hierarchy of estimation models that address the following
areas: :

o Application composition model. Used during the early stages of software engi-
neering, when prototyping of user interfaces, consideration of software and
system interaction, assessment of performance, and evaluation of technology
maturity are paramount.

o Early design stage model. Used once requirements have been stabilized and
basic software architecture has been established.

o Post-architecture-stage model. Used during the construction of the software.

Like all estimation models for software, the COCOMO II models require sizing
information. Three different sizing options are available as part of the model
hierarchy: object points, function points, and lines of source code.

lexit ight
Object type EE esIivANEl

Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3Gl component 10

The COCOMO II application composition model uses object points and is illus-
trated in the following paragraphs. It should be noted that other, more sophisticated
estimation models (using FP and KLOC) are also available as part of COCOMO 1.

Like function points, the object point is an indirect software measure that is com-
puted using counts of the number of (1) screens (at the user interface), (2) reports,
and (3) components likely to be required to build the application. Each object in-
stance (e.g., a screen or report) is classified into one of three complexity levels (i.e.,
simple, medium, or difficult) using criteria suggested by Boehm [Boe96]. In essence,
complexity is a function of the number and source of the client and server data tables
that are required to generate the screen or report and the number of views or sec-
tions presented as part of the screen or report.

When component-based development or general software reuse is to be applied,
the percent of reuse (%reuse) is estimated and the object point count is adjusted:

NOP = (object points) x [(100 — %reuse)/100]
where NOP is defined as new object points.
To derive an estimate of effort based on the computed NOP value, a “productivity
rate” must be derived. Figure 26.7 presents the productivity rate

NOP

PROD = ————————
person-month

for different levels of developer experience and development environment maturity.
Once the productivity rate has been determined, an estimate of project effort is
computed using

NOP
PROD

In more advanced COCOMO Il models,'? a variety of scale factors, cost drivers,

Estimated effort =

a. What is agility? Discuss the relationship between agility and cost of change with a
suitable diagram.
Solution:

Agility has become today's buzzword when describing a modern software process. Every-
one is agile. An agile team is a nimble team able to appropriately respond to changes.
Change is what software development is very much about. Changes in the software be-
ing built, changes to the team members, changes because of new technology, changes of
all kinds that may have an impact on the product they build or the project that creates the
product. Support for changes should be built-in everything we do in software, something
we embrace because it is the heart and soul of software. An agile team recognizes that
software is developed by individuals working in teams and that the skills of these people,

their ability to collaborate is at the core for the success of the proiect.
The conventional wisdom In software development (supported By decades of expe-

rience) is that the cost of change increases nonlinearly as a project progresses
(Figure 3.1, solid black curve). It is relatively easy to accommodate a change when a
software team is gathering requirements (early in a project). A usage scenario might
have to be modified, a list of functions may be extended, or a written specification
can be edited. The costs of doing this work are minimal, and the time required will

CO3

L2

Cost of change
using conventional
software processes

Cost of change
using agile processes

Development cost

Idealized cost of change
using agile process

A

Development schedule progress

b. Explain the SCRUM process model with a suitable and neat diagram.
Solution:

Scrum (the name is derived from an activity that occurs during a rugby match") is
an agile software development method that was conceived by Jeff Sutherland and his
development team in the early 1990s. In recent years, further development on the
Scrum methods has been performed by Schwaber and Beedle [SchO1a].

Scrum principles are consistent with the agile manifesto and are used to guide
development activities within a process that incorporates the following framework
activities: requirements, analysis, design, evolution, and delivery. Within each

Scrum process
flow
D every 24

hours

Scrum: 15 minute daily meeting.

Team members respond fo basics:

1) What did you do since last Scrui
meeting?

2) Do you have any obstacles?

3) What will you do before next
meeting?

Sprint Backlog: Backlog
Feature(s) items

assigned expanded
by team

to sprint &‘

; New functionality
is demonstrated
at end of sprint

Product Backlog:
Prioritized product features desired by the customer

a. What are the different types of software quality model? List the advantages of adopting
a quality model for developing a software.

CO5

L3

T TS TUUTA0IE 10 quanttatively measure the qualit
For example, one may want to set quantit
software meets the quality requirements s
of a software. However, it can be express

measured. The quality models give a characterization (often hierarchical) of software quality in terms of
set of characteristics of the software. The bottom level of the hierarchy

can be directly measured, thereby
enabling a quantitative assessment of the quality of the softw:

are. There are several well-established qualit)
models, including McCall's, Dromey's and Boehm's. Since there Vas no standardization among the largd

number of quality models that became available, the 1SO 9126 model of quality was developed., We briefly
discuss Garvin's McCall’s, Dromey's and Bochm's quality models in this section and discuss 1SO 9126 in
the next section.

y of a software is often felt.
ative quality requirements for a software,
et of it. Unfortunately, it is hard to directl
ed in terms of several attributes of a softw.

or to verify whether
Yy measure the qualif
are that can be direct]

2 A z A 2 i fessor of Harvard Business school in his book, Toral
G ’ imensions: David Garvin, a pro : : . ; ‘
Q::vh:‘ :’QUﬂll:,);,:u defined the quality of any product in terms of eight general attributes of the product,
o s"a:g ; m‘easumble and some are not. Garvin reasoned that sometimes users have subjective
iud;n::mt ?i;e‘l(r;:mlily of a program (perceived quality) that must be taken into accoun 1o Judge its quality.
o
® Performance: How well it performs the jobs.
i ired features.
: well it supports the require A ' . |
. l:‘:}“;:i H:vnbability of a product working satisfactorily within a specific period of time.
ability: |
C: ll‘orm;mce- Degree to which the product meets the requirements.
n = ;
Durability: Measure of the product life .
Serviceability: Speed and effectiveness maintenance.
thetics: The look and feel of the product. .
v ived quality: User’s opinion about the product quality.
e Perceiv ye

b. Explain McCall’s Model?
Solution:

US./1 dUUUNGI ISUI dULYIL UL, IW/USUIL
e enmnngenen| LUpS 1/ du

ters: its Operar
x broad parame p i
B MeCall defined the quality of a software in terms of th-r,c::o different platforms. These g,
ftvin o l,“ ”x‘(lnf“"“ and how casy i’l is to pf)ﬂ’ '“rihu(cs of the software:
ity atiributes are defined based on the following, cleven a

(g i S,
* Correctmems The exten to which a software product .;;.“_c:.flcsjls: Sf":z(t:(':i(;:'t:)vr::r a given duration,
* Rellubility; 1y probability of the software product v‘vnrkmg S:I;IS E i i
Efelency: The amount of computing resources required 1o per "mf' Svalid
hllvurlly: The extent 1o which the data of the software product remain
Unubility: The effort required to operate the software product. i st
Malntainability: The case with which it is possible to locate and fix bugs .

2oy ing requirements.
Flexiblity: The effort required to adapt the software product to changing req

. ; sure that it performs its intend
Testability: ‘The effort required to test a software product to ensur
function,

i ‘ e hardware or software syst;
Portabllity: The effort required to transfer the software product from on
environment to another,

; 7 ed i ications.
® Reusnbility: The extent 1o which a software can be reused in other applicat
" . . 4 e'
e Interoperability: The effort required to integrate the software with other softwar

a. What is management? Explain the different activities of management.

ol

CO4

L2

Solution:

1.13 What is Management?

We have explored some of the special characteristics of software. We now look at the ‘management’ aspect of
software project management. It has been suggested that management involves the following activities:

¢ planning - deciding what is to be done;

o organizing — making arrangements;

o staffing — selecting the right people for the job etc.;

o directing - giving instructions;

e monitoring - checking on progress;

o controlling - taking action to remedy hold-ups;

e innovating — coming up with new solutions;

e representing - liaising with clients, users, developer, suppliers and other stakeholders.

b. Explain the project management control life cycle with a suitable diagram.

The Actions

-~
real world

Data
collection

> Data
Y

Define Data
objectives processing

E—
Y

Making
decisions/plans

Information

Y

Modelling < | Decisions

Implementation

In our example, the project management might examine the ‘estimated completion date’ for completing
data transfer for each branch. These can be checked against the overall target date for completion of this
phase of the project. In effect they are comparing actual performance with one aspect of the overall project
objectives. They might find that one or two branches will fail to complete the transfer of details in time.
They would then need to consider what to do (this is represented in Figure 1.5 by the box Making decisions/
plans). One possibility would be to move staff temporarily from one branch to another. If this is done, there
is always the danger that while the completion date for the one branch is pulled back to before the overall
target date, the date for the branch from which staff are being moved is pushed forward beyond that date. The
project manager would need to calculate carefully what the impact would be in moving staff from particular
branches. This is modelling the consequences of a potential solution. Several different proposals could be
modelled in this way before one was chosen for implementation.

a.Explain about activities covered by software project management with suitable

diagrams?

T.6 Activities Covered by Software Project Management

Chapter 4 on project
analysis and technical

planning looks at some
alternative life cycles.

A software project is not only concerned with the actual writing of software. In fact,
where a software application is bought ‘off the shelf’, there may be no software
writing as such, but this is still fundamentally a software project because so many of
the other activities associated with software will still be present.

Usually there are three successive processes that bring a new system into being — see Figure 1.2.

1. The feasibility study assesses whether a project is worth starting — that it has a valid business case.
Information is gathered about the requirements of the proposed application. Requirements elicitation

can, at least

initially, be complex and difficult. The stakeholders may know the aims they wish to

Introduction to Software Project Management 5

Feasibility study

How do we'
doit?

[

Project execution |

)

Is it worth
doing?

Plan

FIGURE 1.2 The feasibility study/plan/execution cycle

b. Define project and
Solutions:

write the characteristics of projects.

1.3 What is a Project?

Dictionary definitions
of ‘project’ include: ‘A
specific plan or design’
‘A planned undertaking’
‘Alarge undertaking:
e.g. a public works
scheme’, Longman
Concise English
Dictionary, 1982.

The dictionary definitions put a clear emphasis on the project being a planne
activity.

The emphasis on being planned assumes'we can determine how to carry out a tas|
before we start. Yet with exploratory projects this might be difficult. Planning is i
essence thinking carefully about something before you do it — even with uncertail
projects this is worth doing as long as the resulting plans are seen as provisional. Othe
activities, such as routine maintenance, will have been performed so many times tha
everyone knows exactly what to do. In these cases, planning hardly seems necessary

although procedures might be documented to ensure consistency and to help newcomers.

ol

CO4

L2

The following characteristics distinguish projects:
e non-routine tasks are involved;
e planning is required;
e specific objectives are to be met or a specified product is to be created;
e the project has a predetermined time span;
e work is carried out for someone other than yourself;
o work involves several specialisms;
e people are formed into a temporary work group to carry out the task;
e work is carried out in several phases;
e the resources that are available for use on the project are constrained;

o the project is large or complex.

The more any of these factors apply to a task, the more difficult that task will be. Project size is particularly
important. The project that employs 20 developers is likely to be disproportionately more difficult than one
with only 10 staff because of the need for additional coordination. The examples and exercises used in
this book usually relate to smaller projects in order to make the techniques easier to grasp. However, the

techniques and issues discussed are of equal relevance to larger projects.

a.
de

List and explain the principles that guide the process elements of software

velopment

4.2.1 Principles That Guide Process

In Part 1 of this book I discussed the importance of the software process and
described the many different process models that have been proposed for software
engineering work. Regardless of whether a model is linear or iterative, prescriptive
or agile, it can be characterized using the generic process framework that is appli-
cable for all process models. The following set of core principles can be applied to
the framework, and by extension, to every software process.

Principle 1. Be agile. Whether the process model you choose is prescrip-
tive or agile, the basic tenets of agile development should govern your
approach. Every aspect of the work you do should emphasize economy of
action—keep your technical approach as simple as possible, keep the work
products you produce as concise as possible, and make decisions locally
whenever possible.

Principle 2. Focus on quality at every step. The exit condition for every
process activity, action, and task should focus on the quality of the work
product that has been produced.

Principle 3. Be ready to adapt. Process is not a religious experience, and
dogma has no place in it. When necessary, adapt your approach to con-
straints imposed by the problem, the people, and the project itself.

Principle 4. Build an effective team. Software engineering process and
practice are important, but the bottom line is people. Build a self-organizing
team that has mutual trust and respect.

b.Explain feature driven development with suitable diagram?

5+5

COos3

L3

Solution:

3.5.5 Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his
colleagues [Coa99] as a practical process model for object-oriented software engi-
neering. Stephen Palmer and John Felsing [Pal02] have extended and improved
Coad's work, describing an adaptive, agile process that can be applied to moderately
sized and larger software projects.

Like other agile approaches, FDD adopts a philosophy that (1) emphasizes col-
laboration among people on an FDD team; (2) manages problem and project
complexity using feature-based decomposition followed by the integration of
software increments, and (3) communication of technical detail using verbal,
graphical, and text-based means. FDD emphasizes software quality assurance
activities by encouraging an incremental development strategy, the use of design
and code inspections, the application of software quality assurance audits (Chap-
ter 16), the collection of metrics, and the use of patterns (for analysis, design, and
construction).

In the context of FDD, a feature “is a client-valued function that can be imple-
mented in two weeks or less” [Coa99]. The emphasis on the definition of features
provides the following benefits: o

In the context of FDD, a feature “is a client-valued function that can be imple-
mented in two weeks or less” [Coa99]. The emphasis on the definition of features
provides the following benefits:

e Because features are small blocks of deliverable functionality, users can
describe them more easily; understand how they relate to one another more
readily; and better review them for ambiguity, error, or omissions.

o Features can be organized into a hierarchical business-related grouping.

e Since a feature is the FDD deliverable software increment, the team develops
operational features every two weeks.

e Because features are small, their design and code representations are easier
to inspect effectively.

e Project planning, scheduling, and tracking are driven by the feature
hierarchy, rather than an arbitrarily adopted software engineering

task set.
|
[
LEEE Build a Plan Design Build
an
~| Features By By - By
Overall X
List Feature Feature Feature
Model
(more shape A list of features A development plan A design Completed
than content) grouped into sets Class owners pcckage clientvalue
and subject areas Feature Set Owners (sequences) function

