USN			EBB.	CMR INSTITUTE OF	TECHNOLOGY	ARIT	<u>ŗ</u>
	Internal Assessment Tes	st -DEC-2024	4				
Sub:	THEORY OF COMPUTATION	Sub Code:	BCS503	Br	anch:	ISE	
Date:	17/12/2024 Duration: 90 min Max Marks: 50	Sem/Sec:	V/	A,B,C		OB	3E
	Answer any FIVE FULL Quest	ions			MAR KS	СО	RBT
	1 Illustrate the LMD and RMD and parse tree for the given grammar S → aB bA, A → aS [10] bAA a, B→bS aBB b for the string w= aaabbabbba.check whether the Grammar is ambiguous						
	2 Construct the PDA to accept the Language L={WCW ^R w belongs to {a,b}*},show the instantaneous descriptors for the string aaCbb						
3							
4.							L2
5.							
6.	Explain the Programming techniques and Extension to	Turing mach	ines		[10]	CO5	L2

Faculty Signature CCI Signature HOD Signature

									SOYEARS +	*.		
1	USN							GERRA		5	ADIT	_
									CMR INSTITUTE OF	TECHNOLOGY	Y, BENGALUR DE BY NAAC	u.
	Internal Assessment Test -DEC-2024											
Sub:	THEORY C	OF COMPU	JTATION				Sub Code:	BCS503	Br	anch:	ISE	
Date:	17/12/2024	Duration:	90 min	Max	Marks:	50	Sem/Sec:	V/	A,B,C		OE	E
		An	swer any	FIVE F	ULL C)uest	<u>ions</u>			MAR KS	СО	RBT
1	Illustrate the I	LMD and R	MD and p	arse tree	e for th	e giv	en grammar	S→ aB bA	, A → aS	[10]	CO3	L3
	bAA a, B→bS aBB b for the string w= aaabbabbba.check whether the Grammar is											
	ambiguous											
2	2 Construct the PDA to accept the Language $L=\{WCW^R w \text{ belongs to } \{0,1\}^*\}$, show the						[10]	CO3	L3			
	instantaneous											
3	Define Chomskey Normal form (CNF) and Illustrate the CNF form for the given gramma						gramma	[10]	CO4	L3		
	$S \rightarrow S + T \mid T/R$	t, T → T*a	$b, R \rightarrow R^*$	a								
4.	. State and Prove pumping lemma for context free Languages, and prove that							[10]	CO4	L2		
	$L=\{a^nb^nc^n \mid n>=0 \text{ is not context free}\}$											
5.	5. Explain Turing Machine, Construct the Turing machine to accept the language							[10]	CO5	L3		
	$L = \{a^nb^n \}n$	$>=1$ } and a	accept the	string aa	ıbb							
6.	5. Explain the Programming techniques of Turing machines							[10]	CO5	L2		

Faculty Signature CCI Signature HOD Signature

US N							£	CMR INSTITUTE OF TECH	CMR NOLOGY, BENG HORADE BY F	ELT SALURU.
~ .	Γ	Int	ternal Asses	sment To	est II– l		Scheme		_	
Sub :	THEORY (OF COMI	PUTATION			Sub Code:	BCS503	Branch	ISE	,
Date:	/12/2024	/12/2024 Duration: 90 min Max Marks: 50				Sem/Sec:	V A	A,B, C	OBE	
	Answer any FIVE FULL Ques				L .	tions		MAR KS	СО	RB T
	Illustrate the I A→ aS bAA Grammar is a Solution : Le S → aB → aaBB → aaabBB → aaabbaBB → aaabbabB → aaabbabbB	a, B→bS mbiguous ft Most Do (U (U) (U) (U) (U) (U) (U) (U) (U) (U)	aBB b for tl	BB) BB) BB) BB) BB) BB) BB) BB)					CO3	L3

	S			
	a B B			
	a B B a B B			
	b b b			
	b S			
	Î			
	a a			
	Construct the PDA to accept the Language $L=\{WCW^R w \text{ belongs to } \{0,1\}^*\}, \text{show}$	[10]	CO3	L3
	the instantaneous descriptors for the string 01C10			
	Solution: $\delta(q0, 0, Z) \rightarrow (q0, AZ)$			
	$\delta(q0, 1, Z) \rightarrow (q0, BZ)$			
	$\delta(q0,0,A) \rightarrow (q0,AA)$			
	$\delta(q0, 0, B) \rightarrow (q0, AB)$			
	$\delta(q0, 1, A) \rightarrow (q0, BA)$			
	$\delta(q0, 1, B) \rightarrow (q0, BB)$			
	$\delta(q0, C, A) \rightarrow (q1, A)$			
	$\delta(q0, C, B) \rightarrow (q1, B)$			
	$\delta(q1,0,A) \rightarrow (q1,\epsilon)$			
	$\delta(q1, 1, B) \rightarrow (q1, \varepsilon)$			
	$\delta(q1, \varepsilon, Z) \rightarrow (q2, \varepsilon)$			
	1. Z/BZ 1,8/E			
	1, Z/BZ 1, B/E 0, A/E			
	$ \rightarrow \underbrace{ 9_0 \underbrace{c,A/A}_{9_2} + \underbrace{9_2}_{9_2} } $			
	10 C, B/B			
	0,4/44			
	1,4/BA 0,B/AB			
	1,8/88			
3	Define Chomskey Normal form (CNF) and Illustrate the CNF form for the given	[10]	CO4	L3
	grammar $S \rightarrow S+T T/R, T \rightarrow T*a b, R \rightarrow R*a$			
	Solution: CNF is one which has the production of the form $A \rightarrow BC$ or $A \rightarrow a$			
	$S \rightarrow S S + T$, $S \rightarrow S A$, $A \rightarrow S + T$ similarly other productions			
4.	State and Prove pumping lemma for context free Languages, and prove that	[10]	CO4	L3
"	L= $\{a^nb^nc^n \mid n \ge 0 \text{ is not context free}\}$	[-4]		
	Solution: Assume L is context free language			
	Then there is a pumping length n such that any string w εL of length>=n can			
	be written as follows –			
	w >=n			
	We can break w into 5 strings, w=uvxyz, such as the ones given below			
	• vxy >=n			
	• vy # ε			
	• For all $k \ge 0$, the string $uv^k xy^y z \in L$			
	• Let n=4 so, s=a ⁴ b ⁴ c ⁴			
	 Let n=4 so, s=a b c v and y each contain only one type of symbol. 			
	 v and y each contain only one type of symbol. {we are considering only v and y because v and y has power 			
	• {we are considering only v and y because v and y has power uv^2xy^2z }			
	uv Ay L			

	 aaaa bbbb cccc 			
	• $=uv^kxy^kz$ when $k=2$			
	$\bullet = uv^2xy^2z$			
	• =aaaaaabbbbccccc			
	$\bullet = a^6b^4c^5$			
	• (Number of a # number of b #number of c)			
	Therefore, The resultant string is not satisfying the condition			
	• $a^6b^4c^5 \notin L$			
	 If one case fails then no need to check another condition. 			
5.	Explain Turing Machine, Construct the Turing machine to accept the language	[10]	CO5	L3
	$L = \{a^nb^n \}n >= 1$ and accept the string aabb.	[10]		
	plution:			
	Turing machine can be formally described as seven tuples			
	$(Q,X, \Sigma, \delta, q0,B,F)$			
	b/b,R			
	a/a,R			
	q0 $a/X,R$ $q1$ $B/B,L$ $q2$			
	V/V,L			
	Y/Y,N X/X,R b/Y,L			
	(94)			
	Halt state a/a,L			
	b/b,L			
6.	Explain the Programming techniques of Turing machines	[10]	CO5	L2
	Solution:			
	Storage in finite control			
	A state that consists of a fixed number of fixed-size components can be made into a			
	tuple. The behaviour of a TM programme can be made simpler by allowing the			
	tuple's components to store a predetermined amount of data.			
	Example: Keep track of an additional symbol. The actual states of the TM can be			
	[q0, A], [q1, A], [q0, B], or [q1, B] if the "additional data" can be A or B and the			
	"state" can be q0 or q1.			
	1 1		1	
Ī	Multiple Tracks:			
	Multiple Tracks: A particular kind of multi-tape Turing machine called a multi-track Turing machine			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing machines.			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing machines. Subroutines			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing machines. Subroutines TMs can emulate subroutines, including those that send parameters and use			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing machines. Subroutines TMs can emulate subroutines, including those that send parameters and use recursion.			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing machines. Subroutines TMs can emulate subroutines, including those that send parameters and use recursion. Example: Multiplication using a "copy" subroutine			
	A particular kind of multi-tape Turing machine called a multi-track Turing machine has numerous tracks, but only one tape head can read and write on each track. One tape head reads n symbols from n tracks in this instance. Recursively enumerable languages are accepted, just like they are for single-track, single-tape Turing machines. Subroutines TMs can emulate subroutines, including those that send parameters and use recursion.			

Faculty Signature CCI Signature HOD Signature