USN

Internal Assessment Test | - NOVEMBER 2024

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Sub:

Artificial Intelligence Sub Code: | BCS515B | Branch: | ISE

Date:

08-11-2024 | Duration: | 90 min’s | Max Marks: |50 | Sem/Sec: | V- AB,C

Answer any FIVE FULL Questions

MARKS

13

Provide a step-by-step illustration of A* Search algorithm with an example and

pseudocode.

Solutions:

The most widely known form of best-first search is called A" search (pronounced “A
search™). It evaluates nodes by combining g(), the cost to reach the node, and hi(n), the
to get from the node to the goal:

f(n) =g(n) +h(n).
Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated
of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first i
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than
reasonable: provided that the heuristic function k(n) satisfies certain conditions, A* sear
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH e
that A™ uses g + h instead of g.

6+4

COos3

b.

96 Chapter 3. Solving Problems by Searching

(a) The initial state
36601366
(b) After expanding Arad CAmd D
P Sibiu D d

393=130+253 447=118+329 439=754374
(c) After expanding Sibiu < Ard D
<Sibiu_ > '«

147=118+329 149=75+374

Chnd D CagaraD COradea P anics VD

646=280+366 415=230+176 671=2014380 413=220+103
(d) After expanding Rimnicu Vilcea < Arad_
< G =
447=118+329
646=280+366 304176 671=201+380
526=366+160 417=317+100 553=300+253
(e) After expanding Fagaras @ Ard >

447=118+329 449=754374

e Vil

646=250+366 671=291+380

591=338+253 480=150+0 526=366+160 417=317+100 553-300+253
(f) After expanding Pitesti l 5>
< Sibin >

447=118+329

s> COndea> Vi

He=2800366 71911380
oD (oo CHEi> Cobn

I3 A0AIN0 SHIGEHIEL, $53=300+353
P Cnird> G

A18=418+0 61524554160 607=414+193

Figure 3.24 Stages in an A" search for Bucharest. Nodes are labeled with f = g+ h. The
h values are the straight-line distances to Bucharest taken from Figure 3.22.

Explain about Wumpus world

computer game standards, it illustrates some important points about intelligence.

A sample wumpus world is shown in Figure 7.2. The precise definition of the task

environment is given, as suggested in Section 2.3, by the PEAS description:

e Performance measure: +1000 for climbing out of the cave with the gold, —1000 for
falling into a pit or being eaten by the wumpus, —1 for each action taken and —10 for
using up the arrow. The game ends either when the agent dies or when the agent climbs
out of the cave.

e Environment: A 4 x4 grid of rooms. The agent always starts in the square labeled

[1,1], facing to the right. The locations of the gold and the wumpus are chosen ran-

domly, with a uniform distribution, from the squares other than the start square. In

addition, each square other than the start can be a pit, with probability 0.2.

Actuators: The agent can move Forward, TurnLeft by 90°, or TurnRight by 90°. The

agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It

is safe, albeit smelly, to enter a square with a dead wumpus.) If an agent tries to move
forward and bumps into a wall, then the agent does not move. The action Grab can be
used to pick up the gold if it is in the same square as the agent. The action Shoot can
be used to fire an arrow in a straight line in the direction the agent is facing. The arrow
continues until it either hits (and hence kills) the wumpus or hits a wall. The agent has
only one arrow, so only the first Shoot action has any effect. Finally, the action Climb
can be used to climb out of the cave, but only from square [1,1].
e Sensors: The agent has five sensors, each of which gives a single bit of information:

— In the square containing the wumpus and in the directly (not diagonally) adjacent
squares, the agent will perceive a Stench.
— In the squares dircetly adjacent to a pit, the agent will perceive a Breeze.
— In the square where the gold is, the agent will perceive a Glitfer.
— When an agent walks into a wall, it will perceive a Bump.
— When the wumpus is killed, it emits a woeful Scream that can be perceived any-
where in the cave.
The percepts will be given to the agent program in the form of a list of five symbols;
for example, if there is a stench and a breeze, but no glitter, bump, or scream, the agent
program will get [Stench, Breeze, None, None, None].

We can characterize the wumpus environment along the various dimensions given in Chap-
ter 2. Clearly, it is discrete, static, and single-agent. (The wumpus doesn’t move, fortunately.)
It is sequential, because rewards may come only after many actions are taken. It is partially

4 AR Gl PIT
ZBrogzg —
oo SSSS. B
3 «;-;« é S‘telnclh > PIT %
~/God LN
555S ZBrogsg -
2 { Stench { /%e//
; ree |l | o
START
1 2 3 4

Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing

a.

b.

Explain the Knowledge-Based agent with pseudocode.

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action «— ASK(KB, MAKE-ACTION-QUERY(%))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1

return action

Figure7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

The central component of a knowledge-based agent is its knowledge base, or KB. A |
edge base is a set of sentences. (Here “sentence” is used as a technical term. It is 1
but not identical to the sentences of English and other natural languages.) Each senteg
expressed in a language called a knowledge representation language and represents
assertion about the world. Sometimes we dignify a sentence with the name axiom, wh
sentence is taken as given without being derived from other sentences.

There must be a way to add new sentences to the knowledge base and a way to
what is known. The standard names for these operations are TELL and ASK, respec
Both operations may involve inference—that is, deriving new sentences from old. Inf
must obey the requirement that when one A SKs a question of the knowledge base, the ¢
should follow from what has been told (or TELLed) to the knowledge base previously,
in this chapter, we will be more precis‘é\"about the crucial word “follow.” For now, tak
mean that the inference process should not make things up as it goes along.

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our ¢
it takes a percept as input and returns an action. The agent maintains a knowledge basg
which mav initiallv contain some backsround knowledoe.

List different inference rules of Propositional logic with an example

Solutions:Inference and proofs :

5+5

COos3

L2

Inference rules that can be applied to derive a proof—a chain of conclusi
goal.

e The best-known rule is called Modus Ponens (Latin mode that affirms) and is written
a = 3, 0
3
The notation means that, whenever any sentences of the form ¢ = f and « are given,

the sentence f can be inferred.
For example,
if (WumpusAhead A WumpusAlive) = Shoot and (WumpusAhead A WumpusAlive) are given,
Shoot can be inferred.

e Another useful inference rule is And-Elimination, which says that, from a conjunction

of the conjuncts can be inferred:
a A3
&

For example, from (WumpusAhead A WumpusAlive), WumpusAlive can be inferred.

e All of the logical equivalences in Figure 7.11 can be used as inference rules.

For example, the equivalence for biconditional elimination yields the two inference rule;

a < 3 (x = BIA(F = a)
. — and
(e = B)A(F =) o =< 3

Letus see how these inference rules ad equivalences can be used in
with the knowledge base containing R through Rs and show how to pro
pitin[1,2].

e First, apply biconditional elimination to R to obtain

Rs: (Bi1 = (P12VP21) A (P12V P21) = Buy).

¢ Then apply And-Elimination to R to obtain

R7: ((P12V Py1) = Bi1).

¢ Logical equivalence for contrapositives gives
Rs: (7Bi1 = ~(P12V P21)).
¢ Now apply Modus Ponens with Rs and the percept Ry (i.e., =By1), to obtain
Ry: ~(Pi2V Py
¢ Finally, apply De Morgan’s rule, giving the conclusion
Rio: ~P12A—P21.
That is, neither [1,2] nor [2,1] contains a pit.

To apply any of the search algorithms to find a sequence of steps that constitutes a proof. Need to

define a proof problem as follows:

« INITIAL STATE: the initial knowledge base.

« ACTIONS: the set of actions consists of all the inference rules applied to all the sentences
that mateh the tan half of tha infaranca mla

Sound rules of inference

* Here are some examples of sound rules of inference

— A rule is sound if its conclusion is true whenever the premise is true

* Each can be shown to be sound using a truth table

RULE PREMISE CONCLUS]
Modus Ponens A,A—>B B

And Introduction A B AAB
And Elimination AAB A
Double Negation —A A

Unit Resolution Av B, B A

List elements of first-order logic and explain syntax and semantics
Solution:

10

CO4

L2

First-Order logic:

o First-order logic is another way of knowledge representation in artificial
intelligence. It is an extension to propositional logic.

o FOL is sufficiently expressive to represent the natural language statements in a
concise way.

o First-order logic is also known as Predicate logic or First-order predicate logic.
First-order logic is a powerful language that develops information about the
objects in a more easy way and can also express the relationship between those
objects.

o As a natural language, first-order logic also has two main parts:

o Syntax

o Semantics

Basic Elements of First-order logic:

Following are the basic elements of FOL syntax:

Constant 1, 2, A, John, Mumbai, cat,....
Variables X, ¥ Z, 8 b,..

Predicates Brother, Father, >,....
Function sqrt, LeftLegOf, ...
Connectives AV, =~ =, &

Equality ==

Quantifier v, 3

Explain the following concerning first-order logic with an example.
a. Atomic sentences and complex sentences

10

CO4

L3

Atomic sentences:

o Atomic sentences are the most basic sentences of first-order logic. Ths
sentences are formed from a predicate symbol followed by a parenthesis wit

sequence of terms.
o We can represent atomic sentences as Predicate (term], term2, , term n).

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).
Chinky is a cat: => cat (Chinky).

Complex Sentences:

o Complex sentences are made by combining atomic sentences using

connectives.
First-order logic statements can be divided into two parts:

o Subject: Subject is the main part of the statement.

o Predicate: A predicate can be defined as a relation, which binds two atoms

together in a statement.

Consider the statement: "x is an integer.”, it consists of two parts, the first part x is the
b. Quantifiers
Quantifiers in First-order logic:

o A quantifier is a language element which generates quantification, and

quantification specifies the quantity of specimen in the universe of discourse.

o These are the symbols that permit to determine or identify the range and scope
of the variable in the logical expression. There are two types of quantifier:

o Universal Quantifier, (for all, everyone, everything)

- Existential quantifier, (for some, at least one).

Universal Quantifier:

Universal quantifier is a symbol of logical representation, which specifies that

statement within its range is true for everything or every instance of a particular thing.

The Universal quantifier is represented by a symbol v, which resembles an inverted A.

Note: In universal quantifier we use implication "—".

If x is a variable, then ¥x is read as:

Explain about backward chaining with pseudocode?

10

CO5

L2

9.4.1 A backward-chaining algorithm

Figure 9.6 shows a backward-chaining algorithm for definite clauses. FOL-BC-ASK(KD,
goal) will be proved if the knowledge base contains a clause of the form lhs = goal, where
lhs (left-hand side) is a list of conjuncts. An atomic fact like American(West) is considered
as a clause whose lhs is the empty list. Now a query that contains variables might be proved
in multiple ways. For example, the query Person(z) could be proved with the substitution
{z/ John} as well as with {«/ Richard }. So we implement FOL-BC-ASK as a generator—
a function that returns multiple times, each time giving one possible result.

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query,{ })

generator FOL-BC-OR(KB, goal, 0) yields a substitution
for each rule (lhs = 7hs) in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs, Ths) < STANDARDIZE-VARIABLES((lhs, rhs))
for each 0 in FOL-BC-AND(KB, lhs, UNIFY(7hs, goal, 6)) do
yield ¢’

else do

generator FOL-BC-AND(KB, goals, 6) yields a substitution
if & = failure then return
else if LENGTH(goals) = 0 then yield 6

first,rest < FIRST(goals), REST(goals)
for each ¢’ in FOL-BC-OR(KB, SUBST(#, first), f) do
for each 0" in FOL-BC-AND(KB, rest,0") do
yield 6"

Figure 9.6

A simple backward-chaining algorithm for first-order knowledge bases.

Criminal(West)

American(West) |

[Selis(WestMy.2) |

‘ Weapon(y) ‘ Hostile(Nono)

{} z/Nono}
Missile(y) | | Missile(M)) | |O‘>1‘HS(N()JH).M|) | |Enem_\'(Nona,Améric'a) |
/My } {} {1 {1
Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.

The tree should be read depth first, left to right. To prove Criminal(West), we have to prove
the four conjuncts below it. Some of these are in the knowledge base, and others require
further backward chaining. Bindings for each successful unification are shown next to the
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,
originally Hostile(z), z is already bound to Nono.

Explain and draw a planning graph with an example

10

CO5

L3

10.3 PLANNING GRAPHS

All of the heuristics we have suggested can suffer from inaccuracies. This section shows

PLANNING GRAPH how a special data structure called a planning graph can be used to give better heuristic
estimates. These heuristics can be applied to any of the search techniques we have seen so
far. Alternatively, we can search for a solution over the space formed by the planning graph,
using an algorithm called GRAPHPLAN.

A planning problem asks if we can reach a goal state from the initial state. Suppose we
are given a tree of all possible actions from the initial state to successor states, and their suc-
cessors, and so on. If we indexed this tree appropriately, we could answer the planning ques-
tion “can we reach state G from state S” immediately, just by looking it up. Of course, the
tree is of exponential size, so this approach is impractical. A planning graph is polynomial-
size approximation to this tree that can be constructed quickly. The planning graph can’t
answer definitively whether G is reachable from Sy, but it can estimate how many steps it
takes to reach G. The estimate is always correct when it reports the goal is not reachable, and
it never overestimates the number of steps, so it is an admissible heuristic.

LEVEL A planning graph is a directed graph organized into levels: first a level .Sj for the initial
state, consisting of nodes representing each fluent that holds in Sp; then a level A consisting
of nodes for each ground action that might be applicable in Sp; then alternating levels .S;
followed by A;; until we reach a termination condition (to be discussed later).

Init(Have(Cake))
Goal(Have(Cake) N Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT: -~ Have(Cake) A Eaten(Cake))
Action(Bake(Cake)

PRECOND: — Have(Cake)

EFFECT: Have(Cake))

Figure 10.7 The “have cake and eat cake too” problem.

S, Ao S, A, S,
Have(Cake) T Have(Cake) {} Have(Cake)
— Have(Cake) >< ., — Have(Cake)
Eat(Cake)
Eaten(Cake) {} Eaten(Cake)
= Eaten(Cake) 1 — Eaten(Cake) {1 - Eaten(Cake)

Figure 10.8 The planning graph for the “have cake and eat cake too™ problem up to level
S2. Rectangles indicate actions (small squares indicate persistence actions), and straight
lines indicate preconditions and effects. Mutex links are shown as curved gray lines. Not all
mutex links are shown, because the graph would be too cluttered. In general, if two literals
are mutex at .S;, then the persistence actions for those literals will be mutex at A; and we
need not draw that mutex link.

Faculty Signature CCI Signature HOD Signature

