USN					
No.					

HOD

CMRIT

Internal Assessment Test 2- Dec 2024

Sub:	Digital Design a	and Compute	er Organizati	on		Sub Code:	BCS302	Bra	nch:	ISE		
Date:	13-12-2024	Duration:	90 min's	Max Marks:	50	Sem / Sec:	03/ A,B,C					OBE
		Ansv	ver any FIV	E FULL QUE	STIC	DNS			MA	RKS	СО	RBT
1	a. Define bus	arbitration.	Explain in o	detail the appr	oach	es of bus ar	bitration.		5.	+5	CO4	L2
	b. Show with diagram the memory hierarchy with respect to speed, size and cost							t				
2	What is DMA	? Explain th	he hardware	e registers that	are	required in a	a DMA		1	0	CO4	L2
	controller chip.Explain the use of DMA controller in a computer system with a											
	neat diagram											
3	Explain differ	ent mapping	g functions	used in cache	men	nory.			1	0	CO4	L2
4	Explain with r	need diagram	m a single-ł	ous structure c	onne	cting the m	emory to the		1	0	CO5	L2
	processor	_	_			-	-					
5	Explain a com	plete proce	ssor execut	ion with a nea	t dia	gram			1	0	CO5	L2
6		1 C 1		• • •					_		COT	1.0
6	a.Explain the	role of cach	e memory 1	n pipelining.					5.	+5	CO5	L2
	b.Explain the	pipelining r	performance	2.								
	1	11 01										

CI

CCI

No.				

Internal Assessment Test 2– Dec 2024

Sub:	Digital Design a	nd Compute	r Organizatio	on		Sub Code:	BCS302	Bra	nch:	ISE		
Date:	13-12-2024	Duration:	90 min's	Max Marks:	50	Sem / Sec:	03/ A,B,C					OBE
		Ansv	ver any FIV	E FULL QUE	STIO	<u>NS</u>			MA	RKS	СО	RBT
1	a. Define bus a	arbitration.	Explain in o	letail the appro	oach	es of bus ar	bitration.		5	+5	CO4	L2
	b. Show with diagram the memory hierarchy with respect to speed, size and cost											
2	What is DMA	1		0		1			1	0	CO4	L2
	controller chip	.Explain th	e use of DN	A controller	in a c	computer sy	stem with a r	neat				
	diagram											
3	Explain differ	ent mapping	g functions	used in cache	mem	ory.			1	0	CO4	L2
4	Explain with r	need diagram	n a single-t	ous structure co	onne	cting the m	emory to the		1	0	CO5	L2
	processor											
5	Explain a com	plete proce	ssor executi	on with a neat	t diag	gram			1	0	CO5	L2
6	a.Explain the	role of cach	e memory i	n pipelining.					5	+5	CO5	L2
	b.Explain pipe	elining perfo	ormance.									

CCI

|--|

Internal Assessment Test 2 – Dec 2024 Scheme of Evaluation and Solution

Digital Design and Computer Organization Sub Code: BCS302 H 13.12.2024 Duration: 90 min's Max Marks: 50 Sem/Sec: III A, B & C Answer any FIVE FULL Questions			OBE
)BE
Answer any FIVE FULL Questions	MADIZ		
	MARK	S CO	RBT
n a computer. When multiple devices simultaneously request bus access, the arbitration ism determines which device gets priority and control of the bus. (2M) ches to Bus Arbitration: (3M -1M Each) Daisy Chain Arbitration: Devices are connected in a serial chain Bus request signal passes through each device sequentially Priority is determined by physical position in chain Advantages: Simple implementation, low cost Disadvantages: Unfair to devices at end of chain, propagation delay Centralized Parallel Arbitration: Uses a central arbitration unit Each device has dedicated request and grant lines Priority encoder determines access based on fixed or rotating schemes Advantages: More complex wiring, higher cost Disadvantages: More complex wiring, higher cost Disadvantages: More complex wiring, higher cost Distributed Arbitration: Devices determine priority through self-selection Each device has unique ID number Devices simultaneously place IDs on bus Highest/lowest ID wins (depending on implementation)	5	<u>s co</u> co4	RBT L2
Disadvantages: Complex implementation			
n of Memory Hierarchy:(2M) aracteristics of Memory Hierarchy(3M) Registers: Fastest access (< 1ns) Very small capacity (bytes) Highest cost per bit Located in CPU Cache Memory: Fast access (1-10ns) Small capacity (KB to MB) High cost per bit Located between CPU and main memory Main Memory (RAM): Medium access speed (50-100ns) Medium capacity (GB) Moderate cost per bit Primary storage for active programs Secondary Storage: Slow access (ms) Large capacity (TB) Lowest cost per bit	5		L2
t is DMA? Explain the hardware registers that are required in a DMA ler chip. Explain the use of DMA controller in a computer system with a neat	10	CO4	L2
	in a computer. When multiple devices simultaneously request bus access, the arbitration is modetermines which device gets priority and control of the bus. (2M) aches to Bus Arbitration: (3M-1MEach) Daisy Chain Arbitration: Devices are connected in a serial chain Bus request signal passes through each device sequentially Priority is determined by physical position in chain Advantages: Simple implementation, low cost Disadvantages: Turfair to devices at end of chain, propagation delay Centralized Parallel Arbitration: Uses a central arbitration unit Each device has dedicated request and grant lines Priority encoder determines access based on fixed or rotating schemes Advantages: Faster than daisy chain, more flexible Disadvantages: Faster than daisy chain, more flexible Disdvantages: Complex wiring, higher cost Distributed Arbitration: Devices determine priority through self-selection Each device has unique ID number Devices simultaneously place IDs on bus Highest/lowest ID wins (depending on implementation) Advantages: Complex implementation Mow with diagram the memory hierarchy with respect to speed , size and cost m of Memory Hierarchy(3M) Registers: Fastest access (< 1ns) Very small capacity (bytes) Highest cost per bit Located in CPU Cache Memory: Fast access (< 1ns) Nami (capacity (bytes) High cost per bit Located between CPU and main memory Main Memory (RAM): Medium capacity (GB) Moderate cost per bit Primary storage for active programs Secondary Storage: Stow access (nns) Large capacity (TB) Lowest cost per bit Primary storage for active programs Secondary Storage: the DMA? Explain the hardware registers that are required in a DMA ler chip. Explain the use of DMA controller in a computer system with a neat	imation is a mechanism used to manage and coordinate multiple devices' access to a shared bus in a computer. When multiple devices simultaneously request bus access, the arbitration ism determines which device gets priority and control of the bus. (2M) aches to Bus Arbitration: (3M -IM Each) Image: Computer Compu	iminion is a mechanism used to manage and coordinate multiple devices' access to a shared bus in a computer. When multiple devices simultaneously request bus access, the arbitration ism determines which device gets priority and control of the bus. (2M) actes to Bus Arbitration: (3M -1M Each) Disr censes to Bus Arbitration: Devices are connected in a serial chain Bus request signal passes through each device sequentially. Priority is determined by physical position in chain Advantages: Simple implementation, low cost Disadvantages: Unfair to devices at end of chain, propagation delay Centralized Parallel Arbitration: Uses a central arbitration unit Each device has dedicated request and grant lines Priority encoder determines access based on fixed or rotating schemes Advantages: Faster than daixy chain, more flexible Disadvantages: Complex wiring, higher cost Distributed Arbitration: Devices determine priority through self-selection Each device has unique ID number Devices simulaneously place IDs on bus Highest/lowest ID wins (depending on implementation) Advantages: Complex wiring, higher cost Distributed Arbitration: Devices (clims) Wery small capacity (bytes) Highest cost per bit Located in CPU Cache Memory Hierarchy:(2M) aracteristics of Memory Hierarchy:(3M) Registers: Fastet ta ccess (< lins) Very small capacity (KB to MB) High cost per bit Located brew (PU and main memory Main Memory (RAM): Medium access speed (50-100ns) Moderate cost per bit Primary storage Secondary Storage: Slow access (ms) Large capacity (GB) Moderate cost per bit Primary storage Slow access (ms) Large capacity (TB) Lowest cost per bit Primary storage Slow access (ms) Large capacity (TB) Lowest cost per bit Premanent storage

Diagram	n (2M)		1	
Diagran Require				
	ed Hardware Registers in DMA Controller: (3M) Memory Address Register (MAR):			
•	Holds the starting address for memory transfer			
•	Updated after each transfer Specifies source/destination in memory			
•	Specifies source/destination in memory			
2.	Byte Count Register:			
•	Contains number of bytes to be transferred			
٠	Decremented after each transfer			
•	Transfer stops when count reaches zero			
3.	Control Register:			
•	Contains control bits:			
	• Read/Write control			
	• Transfer mode selection			
	• Interrupt enable/disable			
	• Status flags			
	• Operating mode bits			
4.	Status Register:			
•	Indicates:			
	• Transfer completion			
	• Error conditions			
	• Device status			
	• Ready/busy status			
	peration: (3M)			
	CPU initiates DMA transfer			
	DMA controller takes control of system bus			
	Transfer occurs directly between memory and I/O device			
	DMA controller signals completion to CPU			
	CPU resumes normal operation			
	Explain different mapping functions used in cache memory.		CO4	L2
	inition of Cache Mapping Functions (1M)			
	re three main mapping functions used in cache memory:			
	Direct Mapping: (3M)			
•	Simplest mapping technique			
•	Each memory block mapped to only one cache line			
•	Mapping formula: $i = j$ modulo m where $i = cache line number j = memory block number m$			
	= number of lines in cache			
•	Advantages: Simple implementation, low hardware cost			
•	Disadvantages: Higher conflict miss rate			
2.	Associative Mapping (Fully Associative): (3M)			
•	Memory block can be mapped to any cache line			
٠	Content Addressable Memory (CAM) used for tag comparison	10		
•	All tags compared simultaneously			
•	Advantages: Most flexible, lowest miss rate			
•	Disadvantages: Complex hardware, expensive, slower comparison			
3.	Set-Associative Mapping: (3M)			
٠	Compromise between direct and associative mapping			
•	Cache divided into sets, each with multiple lines			
•	· 1			
	Memory block maps to specific set but can be placed anywhere within set			
•	Memory block maps to specific set but can be placed anywhere within set n-way set associative: n lines per set			
	n-way set associative: n lines per set			
•	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets)			
•	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way			
•	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets)			
•	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate		COS	1.2
• • • 4.Explai	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor		CO5	L2
• • 4.Explai Introdu	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks):		CO5	L2
• • 4.Explai Introdu •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose.		CO5	L2
• • 4.Explai Introdu • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory.		CO5	L2
• • • • • • • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory. Components of the Datapath (4 marks):		CO5	L2
• • 4.Explai Introdu • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory. Components of the Datapath (4 marks): Processor Registers (1 mark):	10	CO5	L2
• • • • • • • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory. Components of the Datapath (4 marks): Processor Registers (1 mark): o Role of registers (e.g., MAR, MDR) in memory communication.	10	CO5	L2
• • • • • • • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory. Components of the Datapath (4 marks): Processor Registers (1 mark): o Role of registers (e.g., MAR, MDR) in memory communication. Address Bus (1 mark):	10	CO5	L2
• • • • • • • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory. Components of the Datapath (4 marks): Processor Registers (1 mark): o Role of registers (e.g., MAR, MDR) in memory communication. Address Bus (1 mark): o Used to specify memory locations.	10	CO5	L2
• • • • • • • •	n-way set associative: n lines per set Mapping formula: Set number = (Memory block address) modulo (Number of sets) Common implementations: 2-way, 4-way, 8-way Best balance of hardware complexity and hit rate in with need diagram a single-bus structure connecting the memory to the processor ction and Overview of Single Bus (2 marks): Definition of a datapath and its purpose. Role of the datapath in facilitating communication between the processor and memory. Components of the Datapath (4 marks): Processor Registers (1 mark): o Role of registers (e.g., MAR, MDR) in memory communication. Address Bus (1 mark):	10	CO5	L2

• Transfers data between the processor and memory.			
• Bidirectional flow.			
• Control Signals (1 mark):			
• Read/write control signals for memory operations.			
Step-by-Step Operation (1 marks):			
• Addressing			
• How the processor generates a memory address and sends it via the address bus.			
Data Transfer			
• Memory read: Memory sends data to the processor via the data bus.			
• Memory write: Processor sends data to memory.			
Synchronization			
• Role of control signals (e.g., memory enable, write enable) in coordinating actions.			
Diagram (3Mark)			
5.Explain a complete processor execution with a neat diagram		CO5	L2
Instruction Execution Cycle:			
Instruction Fetch (IF): (1 Mark)			
PC contents transferred to MAR			
Memory read signal activated			
Instruction loaded into MBR			
Instruction transferred to IR			
Program Counter incremented			
Instruction Decode (ID): (1 Mark)			
Opcode extraction from IR			
Operand address calculation			
Source operand fetch from registers			
Control signal generation			
Hazard detection			
Operand Fetch: For Register Operands: (1 Mark)			
Read from register file			
Values placed in temporary registers			
For Memory Operands: (1 Mark)			
Address calculation			
Memory access initiated			
Data loaded into MDR			
Transfer to ALU registers			
Execution (EX):			
ALU performs operation based on opcode			
For arithmetic: Addition, subtraction, etc.			
For logical: AND, OR, XOR, etc.	10		
For shift: Left/right shifts	10		
Condition codes set (Zero, Carry, etc.)			
Memory Access (MEM) if needed:			
Address computation complete			
Memory read/write signals activated			
Data transfer between memory and registers			
Cache checking and updating			
Write Back (WB): (1 Mark)			
Results written to destination register			
Status flags updated			
Memory updated if store instruction			
PC updated for branch instructions			
Control Unit Operations:			
Generates all control signals			
Coordinates timing between stages			
Manages pipeline flow			
Handles interrupts and exceptions			
Example of ADD R1, R2, R3: (3Marks)			
Fetch ADD instruction			
Decode: Identify ADD operation			
Read R2, R3 values			
Execute: $R2 + R3$			
Write result to R1			
Diagram-2Marks			

<u>6</u> . a. Explain the role of cache memory in pipelining.		CO5	L2
b. Explain pipelining performance.			
□ Introduction and Definition (2 marks):			
• Definition of pipeline hazards.			
Mention of their importance in instruction pipelining.			
□ Types of Pipeline Hazards (6 marks):			
• Structural Hazards (2 mark):			
• Resource conflicts explained with an example.			
• Data Hazards (2 marks):			
• Explanation and types (RAW, WAR, WAW).	10		
 Mitigation techniques like forwarding or stalling. 			
• Control Hazards (2 mark):			
• Impact of branch instructions on the pipeline and strategies like branch prediction.			
□ Mitigation Techniques (2 marks):			
• Explanation of general methods to resolve pipeline hazards, including examples:			
• Hardware duplication for structural hazards.			
• Data forwarding or stalling for data hazards.			
• Branch prediction for control hazards.			

CCI

HOD