
USN

Internal Assessment Test 2 – NOV 2024

Sub: NOSQL DATABASE Sub Code: 21CS745 Branch: ISE

Date: 19/11/2024 Duration: 90 min Max Marks: 50 Sem/Sec: VII/ A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. With a neat diagram and example, Explain the importance of partitioning and

combining in the Map-reduce process.
Scheme: Definition + explanation +example + Diagram – 2+3+2+3 Marks

Solution:

In the simplest form, we think of a map-reduce job as having a single reduce function. The

outputs from all the map tasks running on the various nodes are concatenated together and sent

into the reduce. While this will work, there are things we can do to increase the parallelism and

to reduce the data transfer(see figure 1.3)

The first thing we can do is increase parallelism by partitioning the output of the mappers. Each

reduce function operates on the results of a single key. This is a limitation it means you can’t do

anything in the reduce that operates across keys but it’s also a benefit in that it allows you to run

multiple reducers in parallel. To take advantage of this, the results of the mapper are divided up

based the key on each processing node.

Typically, multiple keys are grouped together into partitions. The framework then takes the data

from all the nodes for one partition, combines it into a single group for that partition, and sends

it off to a reducer. Multiple reducers can then operate on the partitions in parallel, with the final

results merged together.

[10] 2 L2

The next problem we can deal with is the amount of data being moved from node to node

between the map and reduce stages. Much of this data is repetitive, consisting of multiple key-

value pairs for the same key. A combiner function cuts this data down by combining all the data

for the same key into a single value (see Figure 1.4). A combiner function is, in essence, a

reducer function— indeed, in many cases the same function can be used for combining as the

final reduction. The reduce function needs a special shape for this to work: Its output must

match its input. We call such a function a combinable reducer.

Not all reduce functions are combinable. Consider a function that counts the number of unique

customers for a particular product. The map function for such an operation would need to emit

the product and the customer. The reducer can then combine them and count how many times

each customer appears for a particular product, emitting the product and the count (see Figure

1.5). But this reducer’s output is different from its input, so it can’t be used as a combiner. You

can still run a combining function here: one that just eliminates duplicate product-customer

pairs, but it will be different from the final reducer.

2. a. Explain the role of quorum in maintaining consistency

Scheme: Definition + explanation – 2+3 Marks

Solution :

In NoSQL databases, quorum refers to the minimum number of nodes that must respond to a

read or write request to consider it successful. It’s used to ensure data consistency and fault

tolerance in distributed systems.

For example, if a NoSQL database replicates data across multiple nodes, a quorum-based

approach might require that a majority of those nodes respond to any read or write operation.

This helps the system avoid inconsistencies that could arise from network partitions or node

failures.

• Write-write conflicts occur when two clients try to write the same data at

the same time. Read-write conflicts occur when one client reads

inconsistent data in the middle of another client’s write.

• Pessimistic approaches lock data records to prevent conflicts. Optimistic

approaches detectconflicts and fix them.

• Distributed systems see read-write conflicts due to some nodes having

received updates whileother nodes have not. Eventual consistency means

that at some point the system will become consistent once all the writes

have propagated to all the nodes.

• Clients usually want read-your-writes consistency, which means a client can

write and then immediately read the new value. This can be difficult if the

read and the write happen on different nodes.

• To get good consistency, you need to involve many nodes in data

operations, but this increaseslatency. So you often have to trade off

consistency versus latency.

• The CAP theorem states that if you get a network partition, you have to

trade off availability ofdata versus consistency.

• Durability can also be traded off against latency, particularly if you want to

survive failureswith replicated data.

• You do not need to contact all replicants to preserve strong consistency

with replication; youjust need a large enough quorum.

[5]

2

L2

b. With a neat diagram, explain the mechanism of sharding in distribution models.

 Scheme : Definition + explanation + Diagram – 1+2+2 Marks Solution :

Sharding is a technique used in NoSQL databases to improve scalability by distributing

data across multiple servers, or "shards." Ideally, each user’s data requests are handled

by a single server, allowing for balanced load distribution. However, achieving this

ideal requires careful data organization to ensure frequently accessed data is on the same

shard. Aggregate-oriented design helps by grouping related data together, making

sharding more effective.

Effective sharding considers factors like physical location for latency reduction and

balancing data evenly across nodes to avoid overload. While traditional sharding

required application logic, many NoSQL databases now offer auto-sharding, simplifying

data distribution and rebalancing.

Sharding enhances both read and write performance but doesn’t inherently improve

resilience. Node failure still makes shard-specific data temporarily inaccessible,

affecting users who need that data. Thus, sharding should be implemented early if

scalability needs are anticipated, as transitioning from a single server to a sharded setup

late in production can disrupt database performance due to resource demands.

[5]

3. Consider the example of product sales data in each year. Apply MapReduce process to

compare the sales of products for each month in 2011 to the prior year.
Scheme : 5+5

 Solution :

To compare the monthly product sales data for each month in 2011 to the prior year (2010), we

can use the MapReduce process to analyze the large dataset effectively. MapReduce is

particularly useful for this task as it allows us to break down the dataset into smaller,

parallelizable tasks, apply computations, and then aggregate the results. Here’s a detailed

explanation of how the MapReduce process would work for this scenario:

[10] 3 L3

Step 1: Define the Input Data

Let’s assume we have a dataset with records for each sale, which includes:

Product ID: A unique identifier for each product.

Date: The date of the sale (including the month and year).

Sales Amount: The amount or units of sale.

For simplicity, we’ll assume the data is organized in a table format, where each row contains

details of an individual sale.

Step 2: Map Phase

The Map function processes each record in the dataset. Our goal in this phase is to:

Extract the month and year from each sale’s date.

Organize the sales data into key-value pairs where each key is a combination of ProductID and

Month, and the value is the Sales Amount.

Each mapper takes one sale record as input and outputs key-value pairs.

Example Input Record:

yaml

ProductID: 101, Date: 2011-02-15, SalesAmount: 150

ProductID: 101, Date: 2010-02-10, SalesAmount: 120

ProductID: 102, Date: 2011-03-25, SalesAmount: 200

ProductID: 102, Date: 2010-03-18, SalesAmount: 180

Mapper Output:

yaml

(101, 2011-02): 150

(101, 2010-02): 120

(102, 2011-03): 200

(102, 2010-03): 180

The key in each output pair is the product ID and month (e.g., (101, 2011-02)), while the value

is the sales amount.

Step 3: Shuffle and Sort Phase

In this phase, all key-value pairs are grouped by key. This step consolidates all records with the

same product and month across all mappers, organizing them for the next phase. After shuffling

and sorting, our data might look like this:

(101, 2011-02): [150]

(101, 2010-02): [120]

(102, 2011-03): [200]

(102, 2010-03): [180]

Step 4: Reduce Phase

The Reduce function aggregates the sales amounts for each product and month across all records

and compares the sales between 2011 and 2010. For each product and month in 2011, the

Reducer will:

Look up the sales amount from the corresponding month in 2010.

Compute the difference or percentage change between 2011 and 2010 sales amounts.

Output the result in a readable format.

Reducer Calculation Example

For (101, 2011-02), where sales in 2011 are 150 and sales in 2010 are 120, the reducer will:

Calculate the percentage change: ((150 - 120) / 120) * 100 = 25%

Output the result:

Reducer Output:

yaml

ProductID: 101, Month: 02, 2010 Sales: 120, 2011 Sales: 150, Change: +25%

ProductID: 102, Month: 03, 2010 Sales: 180, 2011 Sales: 200, Change: +11.1%

Step 5: Final Output

The final output contains the product IDs, months, sales in 2010, sales in 2011, and the

calculated change in sales. This output provides a clear, month-by-month comparison of sales

for each product between 2010 and 2011, showing either the increase or decrease in sales.

4. Explain the features of key-value stores.
Scheme : Definition + explanation for each – 3+7 Marks

 Solution :

Definition

Key-value stores are the simplest NoSQL data stores to use from an API perspective. The client

can either get the value for the key, put a value for a key, or delete a key from the data store.

The value is a blob that the data store just stores, without caring or knowing what’s inside; it’s

the responsibility of the application to understand what was stored. Since key-value stores

always use primary-key access, they generally have great performance and can be easilyscaled.

Features

1. Consistency

Consistency is applicable only for operations on a single key, since these operations are either a

get, put, or delete on a single key. Optimistic writes can be performed, but are very expensive to

implement, because a change in value cannot be determined by the data store.

In distributed key-value store implementations like Riak, the eventually consistent (p. 50) model

of consistency is implemented. Since the value may have already been replicated to other nodes,

Riak has two ways of resolving update conflicts: either the newest write wins and older

writes loose, or both (all) values are returned allowing the client to resolve the conflict.

In Riak, these options can be set up during the bucket creation. Buckets are just a way to

namespace keys so that key collisions can be reduced—for example, all customer keys may

reside in the customer bucket. When creating a bucket, default values for consistency can be

provided, for example that a write is considered good only when the data is consistent across all

the nodes where the data is stored.

Bucket bucket = connection

.createBucket(bucketName)

.withRetrier(attempts(3))

.allowSiblings(siblingsAllowed)

.nVal(numberOfReplicasOfTheData)

.w(numberOfNodesToRespondToWrite)

.r(numberOfNodesToRespondToRead)

.execute();

If we need data in every node to be consistent, we can increase the

numberOfNodesToRespondToWrite set by w to be the same as nVal. Of course doing that will

decrease the write performance of the cluster. To improve on write or read conflicts, we can

change the allowSiblings flag during bucket creation: If it is set to false, we let the last write to

win and not create siblings.

2. Transactions

Different products of the key-value store kind have different specifications of transactions.

Generally speaking, there are no guarantees on the writes. Many data stores do implement

transactions in different ways. Riak uses the concept of quorum (“Quorums,” p. 57)

implemented by using the Wvalue

—replication factor—during the write API call.

Assume we have a Riak cluster with a replication factor of 5 and we supply the Wvalue of 3.

When writing, the write is reported as successful only when it is written and reported as a

success on at least three of the nodes. This allows Riak to have write tolerance; in our example,

with Nequal to 5 and with a Wvalue of 3, the cluster can tolerate N - W = 2nodes being down

for write operations, though we would still have lost some data on those nodes for read.

3. Query Features

Key-value stores typically support querying only by key, limiting options for retrieving data

based on specific attributes within the value. If you need to filter data by a value’s attribute, the

application itself must load the value and evaluate it independently.

This query-by-key limitation has some implications. For example, if the key is unknown,

particularly in cases like ad-hoc debugging, it can be challenging to retrieve records. Most key-

value databases do not readily provide a list of all keys, and even if they did, querying each key

individually for its associated value would be inefficient. Some systems, like Riak Search,

address this by enabling searches within the value, similar to Lucene indexing.

Designing keys is crucial in key-value stores. You might generate keys algorithmically, use user

[10] 3 L2

identifiers (like user ID or email), or base them on timestamps or other external data. This

approach to key design makes key-value stores ideal for storing session information (where the

session ID serves as the key), shopping cart details, user profiles, etc. An expiration property

(expiry_secs) allows keys to expire after a set time, which is especially useful for temporary

data, like session and cart objects.

To store data in Riak, for example, you specify a key-value pair within a bucket. Using the store

API, the value is saved for a particular key. Similarly, data can be retrieved with the fetch API:

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject = bucket.store(key, value).execute();

...

IRiakObject riakObject = bucket.fetch(key).execute();

byte[] bytes = riakObject.getValue();

String value = new String(bytes);

Riak also supports an HTTP interface, enabling operations through a web browser or curl

command. Here’s how to store a JSON object in Riak’s session bucket with a specified key

(a7e618d9db25):

curl -v -X POST -d '{

 "lastVisit": 1324669989288,

 "user": {

 "customerId": "91cfdf5bcb7c",

 "name": "buyer",

 "countryCode": "US",

 "tzOffset": 0

 }

}' -H "Content-Type: application/json"

http://localhost:8098/buckets/session/keys/a7e618d9db25

To fetch this data by its key:

curl -i http://localhost:8098/buckets/session/keys/a7e618d9db25

4. Structure of Data

Key-value databases don’t care what is stored in the value part of the key-value pair. The value

can be a blob, text, JSON, XML, and so on. In Riak, we can use the Content-Type in the POST

request to specify the data type.

5. Scaling

Many key-value stores scale by using sharding. With sharding, the value of the key determines

on which node the key is stored. Let’s assume we are sharding by the first character of the key;

if the key is f4b19d79587d, which starts with an f, it will be sent to different node than the key

ad9c7a396542. This kind of sharding setup can increase performance as more nodes are added

to the cluster.

Sharding also introduces some problems. If the node used to store f goes down, the data stored

on that node becomes unavailable, nor can new data be written with keys that start with f.

Data stores such as Riak allow you to control the aspects of the CAP Theorem (“The CAP

Theorem,” p. 53): N (number of nodes to store the key-value replicas), R(number of nodes that

have to have the data being fetched before the read is considered successful), and W (the

number of nodes the write has to be written to before it is considered successful).

Let’s assume we have a 5-node Riak cluster. Setting N to 3 means that all data is replicated to at

least three nodes, setting R to 2 means any two nodes must reply to a GET request for it to be

considered successful, and setting W to 2 ensures that the PUT request is written to two nodes

before the write is considered successful.

These settings allow us to fine-tune node failures for read or write operations. Based on our

need, we can change these values for better read availability or write availability. Generally

speaking choose a W value to match your consistency needs; these values can be set as defaults

during bucket creation.

http://localhost:8098/buckets/session/keys/a7e618d9db25
http://localhost:8098/buckets/session/keys/a7e618d9db25

5. a. Identify the situations where Key-value stores are ideal and not a best solution.
Scheme : 2.5+2.5

Ideal Solution

Storing Session Information

Generally, every web session is unique and is assigned a unique sessionid value. Applications

that store the sessionidon disk or in an RDBMS will greatly benefit from moving to a key-value

store, since everything about the session can be stored by a single PUTrequest or retrieved using

GET. This single-request operation makes it very fast, as everything about the session is stored

in a single object. Solutions such as Memcached are used by many web applications, and Riak

can be used when availability is important.

User Profiles, Preferences

Almost every user has a unique userId, username, or some other attribute, as well as preferences

such as language, color, timezone, which products the user has access to, and so on. This can all

be put into an object, so getting preferences of a user takes a single GET operation. Similarly,

product profiles can be stored.

Shopping Cart Data

E-commerce websites have shopping carts tied to the user. As we want the shopping carts to be

available all the time, across browsers, machines, and sessions, all the shopping information can

be put into the value where the key is the userid. A Riak cluster would be best suited for these

kinds of applications.

When Not to Use

There are problem spaces where key-value stores are not the best solution.

Relationships among Data

If you need to have relationships between different sets of data, or correlate the data between

different sets of keys, key-value stores are not the best solution to use, even though some key-

value stores provide link-walking features.

Multioperation Transactions

If you’re saving multiple keys and there is a failure to save any one of them, and you want to

revert or roll back the rest of the operations, key-value stores are not the best solution to be used.

Query by Data

If you need to search the keys based on something found in the value part of the key-value pairs,

then key-value stores are not going to perform well for you. There is no way to inspect the value

on the database side, with the exception of some products like Riak Search or indexing engines

like Lucene [Lucene] or Solr [Solr].

Operations by Sets

Since operations are limited to one key at a time, there is no way to operate upon multiple keys

at the same time. If you need to operate upon multiple keys, you have to handle this from the

client side.

[5] 2 L2

5. b. Explain how data can be read & posted from and to the bucket using queries in Riak.
Scheme : 2.5+2.5

In Riak, a distributed NoSQL key-value database, data can be read from and posted to a bucket

(a logical grouping of keys) using queries. Riak provides an HTTP-based RESTful interface,

making it accessible through HTTP requests, such as with curl, as well as programmatically

through various client libraries.

Posting (Writing) Data to a Bucket

To store data in Riak, you typically specify a bucket, a unique key within that bucket, and the

value you want to store. The process involves an HTTP PUT or POST request where the key-

value pair is saved in the specified bucket.

For example, let’s say we want to store a user’s session data in a bucket called session with the

key user1234.

1. Prepare the JSON Data: Organize the data in JSON format (or any format supported by Riak).

{

 "lastVisit": 1324669989288,

[5]

 "user": {

 "customerId": "91cfdf5bcb7c",

 "name": "buyer",

 "countryCode": "US",

 "tzOffset": 0

 }

}

2. Execute the curl Command to POST Data: Use curl to make a POST request to Riak's HTTP

interface:

curl -X POST -d '{

 "lastVisit": 1324669989288,

 "user": {

 "customerId": "91cfdf5bcb7c",

 "name": "buyer",

 "countryCode": "US",

 "tzOffset": 0

 }

}' -H "Content-Type: application/json" http://localhost:8098/buckets/session/keys/user1234

>>POST sends the JSON object to the specified bucket (session) with the key (user1234).

>>-H "Content-Type: application/json" specifies the data format.

Reading (Fetching) Data from a Bucket

To read or fetch data in Riak, you use an HTTP GET request to retrieve the value associated

with a specific key from a bucket.

For instance, to retrieve the session data stored with key user1234 in the session bucket:

1. Execute the curl Command to GET Data:

curl -i http://localhost:8098/buckets/session/keys/user1234

>>GET requests the data at the URL specified.

>>The response will include the data stored for user1234 in JSON format, along with HTTP

headers.

2. Example Response: Riak will return the data associated with the key:

{

 "lastVisit": 1324669989288,

 "user": {

 "customerId": "91cfdf5bcb7c",

 "name": "buyer",

 "countryCode": "US",

 "tzOffset": 0

 }

}

Using Riak Client Libraries

Alternatively, Riak offers client libraries in languages like Java, Python, and Ruby, allowing

data posting and reading programmatically without directly writing HTTP requests.

For example, using Java:

Bucket bucket = getBucket("session");

bucket.store("user1234", jsonData).execute(); // To post data

IRiakObject riakObject = bucket.fetch("user1234").execute(); // To fetch data

6. Explain:

a. Various approaches of constructing version stamps

b. CAP Theorem

Scheme : Definition & Explanation– 2+3+2+3 Marks

Solution:

1. Various approaches of constructing version stamps

Incremental Version Numbering

Each time data is modified, a version number is incremented. This version counter is unique to

each item or record, often starting from zero.

Advantages: Easy to track the order of changes, and there is no reliance on external time

sources.

Disadvantages: Not well-suited for distributed systems with multiple nodes updating the data

simultaneously, as it can lead to version conflicts.

UUIDs (Universally Unique Identifiers)

Unique identifiers, like UUIDs, can be generated each time an item is updated, representing a

new version. UUIDs use a combination of random elements and time-based factors to ensure

uniqueness.

Advantages: Can be generated independently on different nodes without conflict.

Disadvantages: Lacks natural ordering of versions and may complicate conflict resolution.

Hash-Based Versioning

In this approach, the data’s content itself is hashed (e.g., using SHA-256) to create a unique

version stamp for each modification. Changes to the data will produce a different hash,

indicating a new version.

Advantages: Useful for ensuring data integrity, as any alteration to the data results in a new

hash.

Disadvantages: Hashes do not inherently indicate version order, making it harder to track the

sequence of changes.

Vector Clocks

Vector clocks are a sophisticated technique used in distributed systems where each node keeps a

vector of counters (one per node) for a given data item. When a node modifies the item, it

increments its own counter in the vector clock.

Advantages: Helps track causality and manage concurrent updates across distributed nodes.

Disadvantages: Vector clocks grow in size with the number of nodes, which may lead to

overhead in highly distributed environments.

Lamport Timestamps

Lamport timestamps are logical clocks that use counters instead of actual time to represent the

order of events. Each process in a system maintains a counter, incrementing it with each event.

This timestamp is attached to messages and helps order events in a distributed setup.

Advantages: Simple to implement and suitable for distributed systems where only event order is

important.

Disadvantages: Only provides partial ordering of events and may not handle concurrent updates

well.

Commit Hashes in Version Control Systems (e.g., Git)

Systems like Git use commit hashes (a combination of the content and parent history) to track

versions. Each commit is uniquely identified, allowing for branching, merging, and comparison.

Advantages: Efficient for systems requiring detailed version history with branching.

Disadvantages: Not suitable for real-time versioning due to its complexity and reliance on

content history.

[10] 3 L2

2. CAP Theorem

The basic statement of the CAP theorem is that, given the three properties of

Consistency, Availability, and Partition tolerance, you can only get two. Obviously

this depends very much on how you define these three properties, and differing

opinions have led to several debates on what the real consequences of the CAP

theorem are.

Consistency is pretty much as we’ve defined it so far. Availability has a

particular meaning in the context of CAP it means that if you can talk to a node in

the cluster, it can read and write data. That’s subtly different from the usual

meaning, which we’ll explore later. Partition tolerance means that the cluster can

survive communication breakages in the cluster that separate the cluster into multiple

partitions unable to communicate with each other.

A single-server system is the obvious example of a CA system a system that

has Consistency and Availability but not Partition tolerance. A single machine can’t

partition, so it does not have to worry about partition tolerance. There’s only one

node so if it’s up, it’s available. Being up and keeping consistency is reasonable.

This is the world that most relational database systems live in.

Faculty Signature CCI Signature HOD Signature

