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Sub: NOSQL DATABASE Sub Code: 21CS745 Branch: ISE 

Date:    19/11/2024 Duration: 90 min Max Marks: 50 Sem/Sec: VII/ A, B & C OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1. With a neat diagram and example, Explain the importance of partitioning and 

combining in the Map-reduce process. 
Scheme: Definition + explanation +example + Diagram – 2+3+2+3 Marks  

Solution: 

 

In the simplest form, we think of a map-reduce job as having a single reduce function. The 

outputs from all the map tasks running on the various nodes are concatenated together and sent 

into the reduce. While this will work, there are things we can do to increase the parallelism and 

to reduce the data transfer(see figure 1.3) 

The first thing we can do is increase parallelism by partitioning the output of the mappers. Each 

reduce function operates on the results of a single key. This is a limitation it means you can’t do 

anything in the reduce that operates across keys but it’s also a benefit in that it allows you to run 

multiple reducers in parallel. To take advantage of this, the results of the mapper are divided up 

based the key on each processing node. 

Typically, multiple keys are grouped together into partitions. The framework then takes the data 

from all the nodes for one partition, combines it into a single group for that partition, and sends 

it off to a reducer. Multiple reducers can then operate on the partitions in parallel, with the final 

results merged together.
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The next problem we can deal with is the amount of data being moved from node to node 

between the map and reduce stages. Much of this data is repetitive, consisting of multiple key-

value pairs for the same key. A combiner function cuts this data down by combining all the data 

for the same key into a single value (see Figure 1.4). A combiner function is, in essence, a 

reducer function— indeed, in many cases the same function can be used for combining as the 

final reduction. The reduce function needs a special shape for this to work: Its output must 

match its input. We call such a function a combinable reducer. 

Not all reduce functions are combinable. Consider a function that counts the number of unique 

customers for a particular product. The map function for such an operation would need to emit 

the product and the customer. The reducer can then combine them and count how many times 

each customer appears for a particular product, emitting the product and the count (see Figure 

1.5). But this reducer’s output is different from its input, so it can’t be used as a combiner. You 

can still run a combining function here: one that just eliminates duplicate product-customer 

pairs, but it will be different from the final reducer.

 

 

 
 

   



2. a. Explain the role of quorum in maintaining consistency 

Scheme: Definition + explanation – 2+3 Marks 

Solution : 

In NoSQL databases, quorum refers to the minimum number of nodes that must respond to a 

read or write request to consider it successful. It’s used to ensure data consistency and fault 

tolerance in distributed systems. 

 

For example, if a NoSQL database replicates data across multiple nodes, a quorum-based 

approach might require that a majority of those nodes respond to any read or write operation. 

This helps the system avoid inconsistencies that could arise from network partitions or node 

failures. 

• Write-write conflicts occur when two clients try to write the same data at 

the same time. Read-write conflicts occur when one client reads 

inconsistent data in the middle of another client’s write. 

• Pessimistic approaches lock data records to prevent conflicts. Optimistic 

approaches detectconflicts and fix them. 

• Distributed systems see read-write conflicts due to some nodes having 

received updates whileother nodes have not. Eventual consistency means 

that at some point the system will become consistent once all the writes 

have propagated to all the nodes. 

• Clients usually want read-your-writes consistency, which means a client can 

write and then immediately read the new value. This can be difficult if the 

read and the write happen on different nodes. 

• To get good consistency, you need to involve many nodes in data 

operations, but this increaseslatency. So you often have to trade off 

consistency versus latency. 

• The CAP theorem states that if you get a network partition, you have to 

trade off availability ofdata versus consistency. 

• Durability can also be traded off against latency, particularly if you want to 

survive failureswith replicated data. 

• You do not need to contact all replicants to preserve strong consistency 

with replication; youjust need a large enough quorum. 
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b. With a neat diagram, explain the mechanism of sharding in distribution models. 

 Scheme : Definition + explanation + Diagram – 1+2+2 Marks Solution : 

Sharding is a technique used in NoSQL databases to improve scalability by distributing 

data across multiple servers, or "shards." Ideally, each user’s data requests are handled 

by a single server, allowing for balanced load distribution. However, achieving this 

ideal requires careful data organization to ensure frequently accessed data is on the same 

shard. Aggregate-oriented design helps by grouping related data together, making 

sharding more effective. 

 

Effective sharding considers factors like physical location for latency reduction and 

balancing data evenly across nodes to avoid overload. While traditional sharding 

required application logic, many NoSQL databases now offer auto-sharding, simplifying 

data distribution and rebalancing. 

 

Sharding enhances both read and write performance but doesn’t inherently improve 

resilience. Node failure still makes shard-specific data temporarily inaccessible, 

affecting users who need that data. Thus, sharding should be implemented early if 

scalability needs are anticipated, as transitioning from a single server to a sharded setup 

late in production can disrupt database performance due to resource demands. 
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3. Consider the example of product sales data in each year. Apply MapReduce process to 

compare the sales of products for each month in 2011 to the prior year. 
Scheme : 5+5 

 Solution : 

To compare the monthly product sales data for each month in 2011 to the prior year (2010), we 

can use the MapReduce process to analyze the large dataset effectively. MapReduce is 

particularly useful for this task as it allows us to break down the dataset into smaller, 

parallelizable tasks, apply computations, and then aggregate the results. Here’s a detailed 

explanation of how the MapReduce process would work for this scenario: 
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Step 1: Define the Input Data 

Let’s assume we have a dataset with records for each sale, which includes: 

 

Product ID: A unique identifier for each product. 

Date: The date of the sale (including the month and year). 

Sales Amount: The amount or units of sale. 

For simplicity, we’ll assume the data is organized in a table format, where each row contains 

details of an individual sale. 

 

Step 2: Map Phase 

The Map function processes each record in the dataset. Our goal in this phase is to: 

 

Extract the month and year from each sale’s date. 

Organize the sales data into key-value pairs where each key is a combination of ProductID and 

Month, and the value is the Sales Amount. 

Each mapper takes one sale record as input and outputs key-value pairs.  

 

Example Input Record: 

yaml 

ProductID: 101, Date: 2011-02-15, SalesAmount: 150 

ProductID: 101, Date: 2010-02-10, SalesAmount: 120 

ProductID: 102, Date: 2011-03-25, SalesAmount: 200 

ProductID: 102, Date: 2010-03-18, SalesAmount: 180 

 

Mapper Output: 

yaml 

(101, 2011-02): 150 

(101, 2010-02): 120 

(102, 2011-03): 200 

(102, 2010-03): 180 

 

The key in each output pair is the product ID and month (e.g., (101, 2011-02)), while the value 

is the sales amount. 

 

Step 3: Shuffle and Sort Phase 

In this phase, all key-value pairs are grouped by key. This step consolidates all records with the 

same product and month across all mappers, organizing them for the next phase. After shuffling 

and sorting, our data might look like this: 

 

(101, 2011-02): [150] 

(101, 2010-02): [120] 



(102, 2011-03): [200] 

(102, 2010-03): [180] 

 

Step 4: Reduce Phase 

 

The Reduce function aggregates the sales amounts for each product and month across all records 

and compares the sales between 2011 and 2010. For each product and month in 2011, the 

Reducer will: 

 

Look up the sales amount from the corresponding month in 2010. 

Compute the difference or percentage change between 2011 and 2010 sales amounts. 

Output the result in a readable format. 

Reducer Calculation Example 

For (101, 2011-02), where sales in 2011 are 150 and sales in 2010 are 120, the reducer will: 

 

Calculate the percentage change: ((150 - 120) / 120) * 100 = 25% 

 

Output the result: 

Reducer Output: 

yaml 

ProductID: 101, Month: 02, 2010 Sales: 120, 2011 Sales: 150, Change: +25% 

ProductID: 102, Month: 03, 2010 Sales: 180, 2011 Sales: 200, Change: +11.1% 

 

Step 5: Final Output 

The final output contains the product IDs, months, sales in 2010, sales in 2011, and the 

calculated change in sales. This output provides a clear, month-by-month comparison of sales 

for each product between 2010 and 2011, showing either the increase or decrease in sales. 

 

 

 

 

 

 



4. Explain the features of key-value stores. 
Scheme : Definition + explanation for each – 3+7 Marks 

 Solution : 

Definition 

Key-value stores are the simplest NoSQL data stores to use from an API perspective. The client 

can either get the value for the key, put a value for a key, or delete a key from the data store. 

The value is a blob that the data store just stores, without caring or knowing what’s inside; it’s 

the responsibility of the application to understand what was stored. Since key-value stores 

always use primary-key access, they generally have great performance and can be easilyscaled. 

 

Features 

 

1. Consistency 

Consistency is applicable only for operations on a single key, since these operations are either a 

get, put, or delete on a single key. Optimistic writes can be performed, but are very expensive to 

implement, because a change in value cannot be determined by the data store. 

In distributed key-value store implementations like Riak, the eventually consistent (p. 50) model 

of consistency is implemented. Since the value may have already been replicated to other nodes, 

Riak has two ways of resolving update conflicts: either the newest write wins and older 

writes loose, or both (all) values are returned allowing the client to resolve the conflict. 

In Riak, these options can be set up during the bucket creation. Buckets are just a way to 

namespace keys so that key collisions can be reduced—for example, all customer keys may 

reside in the customer bucket. When creating a bucket, default values for consistency can be 

provided, for example that a write is considered good only when the data is consistent across all 

the nodes where the data is stored. 

Bucket bucket = connection 

.createBucket(bucketName) 

.withRetrier(attempts(3)) 

.allowSiblings(siblingsAllowed) 

.nVal(numberOfReplicasOfTheData) 

.w(numberOfNodesToRespondToWrite) 

.r(numberOfNodesToRespondToRead) 

.execute(); 

If we need data in every node to be consistent, we can increase the 

numberOfNodesToRespondToWrite set by w to be the same as nVal. Of course doing that will 

decrease the write performance of the cluster. To improve on write or read conflicts, we can 

change the allowSiblings flag during bucket creation: If it is set to false, we let the last write to 

win and not create siblings. 

 

2. Transactions 

Different products of the key-value store kind have different specifications of transactions. 

Generally speaking, there are no guarantees on the writes. Many data stores do implement 

transactions in different ways. Riak uses the concept of quorum (“Quorums,” p. 57) 

implemented by using the Wvalue 

—replication factor—during the write API call. 

Assume we have a Riak cluster with a replication factor of 5 and we supply the Wvalue of 3. 

When writing, the write is reported as successful only when it is written and reported as a 

success on at least three of the nodes. This allows Riak to have write tolerance; in our example, 

with Nequal to 5 and with a Wvalue of 3, the cluster can tolerate N - W = 2nodes being down 

for write operations, though we would still have lost some data on those nodes for read. 

 

3. Query Features 

Key-value stores typically support querying only by key, limiting options for retrieving data 

based on specific attributes within the value. If you need to filter data by a value’s attribute, the 

application itself must load the value and evaluate it independently. 

 

This query-by-key limitation has some implications. For example, if the key is unknown, 

particularly in cases like ad-hoc debugging, it can be challenging to retrieve records. Most key-

value databases do not readily provide a list of all keys, and even if they did, querying each key 

individually for its associated value would be inefficient. Some systems, like Riak Search, 

address this by enabling searches within the value, similar to Lucene indexing. 

 

Designing keys is crucial in key-value stores. You might generate keys algorithmically, use user 
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identifiers (like user ID or email), or base them on timestamps or other external data. This 

approach to key design makes key-value stores ideal for storing session information (where the 

session ID serves as the key), shopping cart details, user profiles, etc. An expiration property 

(expiry_secs) allows keys to expire after a set time, which is especially useful for temporary 

data, like session and cart objects. 

 

To store data in Riak, for example, you specify a key-value pair within a bucket. Using the store 

API, the value is saved for a particular key. Similarly, data can be retrieved with the fetch API: 

 

Bucket bucket = getBucket(bucketName); 

IRiakObject riakObject = bucket.store(key, value).execute(); 

... 

IRiakObject riakObject = bucket.fetch(key).execute(); 

byte[] bytes = riakObject.getValue(); 

String value = new String(bytes); 

 

Riak also supports an HTTP interface, enabling operations through a web browser or curl 

command. Here’s how to store a JSON object in Riak’s session bucket with a specified key 

(a7e618d9db25): 

 

curl -v -X POST -d '{ 

  "lastVisit": 1324669989288, 

  "user": { 

    "customerId": "91cfdf5bcb7c", 

    "name": "buyer", 

    "countryCode": "US", 

    "tzOffset": 0 

  } 

}' -H "Content-Type: application/json" 

http://localhost:8098/buckets/session/keys/a7e618d9db25 

 

To fetch this data by its key: 

curl -i http://localhost:8098/buckets/session/keys/a7e618d9db25 

 

4. Structure of Data 

Key-value databases don’t care what is stored in the value part of the key-value pair. The value 

can be a blob, text, JSON, XML, and so on. In Riak, we can use the Content-Type in the POST 

request to specify the data type. 

 

5. Scaling 

Many key-value stores scale by using sharding. With sharding, the value of the key determines 

on which node the key is stored. Let’s assume we are sharding by the first character of the key; 

if the key is f4b19d79587d, which starts with an f, it will be sent to different node than the key 

ad9c7a396542. This kind of sharding setup can increase performance as more nodes are added 

to the cluster. 

Sharding also introduces some problems. If the node used to store f goes down, the data stored 

on that node becomes unavailable, nor can new data be written with keys that start with f. 

Data stores such as Riak allow you to control the aspects of the CAP Theorem (“The CAP 

Theorem,” p. 53): N (number of nodes to store the key-value replicas), R(number of nodes that 

have to have the data being fetched before the read is considered successful), and W (the 

number of nodes the write has to be written to before it is considered successful). 

Let’s assume we have a 5-node Riak cluster. Setting N to 3 means that all data is replicated to at 

least three nodes, setting R to 2 means any two nodes must reply to a GET request for it to be 

considered successful, and setting W to 2 ensures that the PUT request is written to two nodes 

before the write is considered successful. 

These settings allow us to fine-tune node failures for read or write operations. Based on our 

need, we can change these values for better read availability or write availability. Generally 

speaking choose a W value to match your consistency needs; these values can be set as defaults 

during bucket creation. 

http://localhost:8098/buckets/session/keys/a7e618d9db25
http://localhost:8098/buckets/session/keys/a7e618d9db25


5. a. Identify the situations where Key-value stores are ideal and not a best solution. 
Scheme : 2.5+2.5 

Ideal Solution 

Storing Session Information 

Generally, every web session is unique and is assigned a unique sessionid value. Applications 

that store the sessionidon disk or in an RDBMS will greatly benefit from moving to a key-value 

store, since everything about the session can be stored by a single PUTrequest or retrieved using 

GET. This single-request operation makes it very fast, as everything about the session is stored 

in a single object. Solutions such as Memcached are used by many web applications, and Riak 

can be used when availability is important. 

 

User Profiles, Preferences 

Almost every user has a unique userId, username, or some other attribute, as well as preferences 

such as language, color, timezone, which products the user has access to, and so on. This can all 

be put into an object, so getting preferences of a user takes a single GET operation. Similarly, 

product profiles can be stored. 

 

Shopping Cart Data 

E-commerce websites have shopping carts tied to the user. As we want the shopping carts to be 

available all the time, across browsers, machines, and sessions, all the shopping information can 

be put into the value where the key is the userid. A Riak cluster would be best suited for these 

kinds of applications. 

 

When Not to Use 

There are problem spaces where key-value stores are not the best solution. 

 

Relationships among Data 

If you need to have relationships between different sets of data, or correlate the data between 

different sets of keys, key-value stores are not the best solution to use, even though some key-

value stores provide link-walking features. 

 

Multioperation Transactions 

If you’re saving multiple keys and there is a failure to save any one of them, and you want to 

revert or roll back the rest of the operations, key-value stores are not the best solution to be used. 

 

Query by Data 

If you need to search the keys based on something found in the value part of the key-value pairs, 

then key-value stores are not going to perform well for you. There is no way to inspect the value 

on the database side, with the exception of some products like Riak Search or indexing engines 

like Lucene [Lucene] or Solr [Solr]. 

 

Operations by Sets 

Since operations are limited to one key at a time, there is no way to operate upon multiple keys 

at the same time. If you need to operate upon multiple keys, you have to handle this from the 

client side. 
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5. b. Explain how data can be read & posted from and to the bucket using queries in Riak. 
Scheme : 2.5+2.5 

 

In Riak, a distributed NoSQL key-value database, data can be read from and posted to a bucket 

(a logical grouping of keys) using queries. Riak provides an HTTP-based RESTful interface, 

making it accessible through HTTP requests, such as with curl, as well as programmatically 

through various client libraries. 

Posting (Writing) Data to a Bucket 

To store data in Riak, you typically specify a bucket, a unique key within that bucket, and the 

value you want to store. The process involves an HTTP PUT or POST request where the key-

value pair is saved in the specified bucket. 

 

For example, let’s say we want to store a user’s session data in a bucket called session with the 

key user1234. 

 

1. Prepare the JSON Data: Organize the data in JSON format (or any format supported by Riak). 

{ 

  "lastVisit": 1324669989288, 

[5] 

 

 

 

 

 

 

  



  "user": { 

    "customerId": "91cfdf5bcb7c", 

    "name": "buyer", 

    "countryCode": "US", 

    "tzOffset": 0 

  } 

} 

 

2. Execute the curl Command to POST Data: Use curl to make a POST request to Riak's HTTP 

interface: 

curl -X POST -d '{ 

  "lastVisit": 1324669989288, 

  "user": { 

    "customerId": "91cfdf5bcb7c", 

    "name": "buyer", 

    "countryCode": "US", 

    "tzOffset": 0 

  } 

}' -H "Content-Type: application/json" http://localhost:8098/buckets/session/keys/user1234 

 

>>POST sends the JSON object to the specified bucket (session) with the key (user1234). 

>>-H "Content-Type: application/json" specifies the data format. 

 

Reading (Fetching) Data from a Bucket 

To read or fetch data in Riak, you use an HTTP GET request to retrieve the value associated 

with a specific key from a bucket. 

 

For instance, to retrieve the session data stored with key user1234 in the session bucket: 

 

1. Execute the curl Command to GET Data: 

curl -i http://localhost:8098/buckets/session/keys/user1234 

 

>>GET requests the data at the URL specified. 

>>The response will include the data stored for user1234 in JSON format, along with HTTP 

headers. 

 

2. Example Response: Riak will return the data associated with the key: 

{ 

  "lastVisit": 1324669989288, 

  "user": { 

    "customerId": "91cfdf5bcb7c", 

    "name": "buyer", 

    "countryCode": "US", 

    "tzOffset": 0 

  } 

} 

 

Using Riak Client Libraries 

Alternatively, Riak offers client libraries in languages like Java, Python, and Ruby, allowing 

data posting and reading programmatically without directly writing HTTP requests. 

 

For example, using Java: 

Bucket bucket = getBucket("session"); 

bucket.store("user1234", jsonData).execute();  // To post data 

IRiakObject riakObject = bucket.fetch("user1234").execute();  // To fetch data 

 

 

 

 



6.  Explain: 

a. Various approaches of constructing version stamps 

b. CAP Theorem  

Scheme : Definition & Explanation– 2+3+2+3 Marks  
 

Solution: 

 

1. Various approaches of constructing version stamps 
 

Incremental Version Numbering 

Each time data is modified, a version number is incremented. This version counter is unique to 

each item or record, often starting from zero. 

Advantages: Easy to track the order of changes, and there is no reliance on external time 

sources. 

Disadvantages: Not well-suited for distributed systems with multiple nodes updating the data 

simultaneously, as it can lead to version conflicts. 

 

UUIDs (Universally Unique Identifiers) 

Unique identifiers, like UUIDs, can be generated each time an item is updated, representing a 

new version. UUIDs use a combination of random elements and time-based factors to ensure 

uniqueness. 

Advantages: Can be generated independently on different nodes without conflict. 

Disadvantages: Lacks natural ordering of versions and may complicate conflict resolution. 

 

Hash-Based Versioning 

In this approach, the data’s content itself is hashed (e.g., using SHA-256) to create a unique 

version stamp for each modification. Changes to the data will produce a different hash, 

indicating a new version. 

Advantages: Useful for ensuring data integrity, as any alteration to the data results in a new 

hash. 

Disadvantages: Hashes do not inherently indicate version order, making it harder to track the 

sequence of changes. 

 

Vector Clocks 

Vector clocks are a sophisticated technique used in distributed systems where each node keeps a 

vector of counters (one per node) for a given data item. When a node modifies the item, it 

increments its own counter in the vector clock. 

Advantages: Helps track causality and manage concurrent updates across distributed nodes. 

Disadvantages: Vector clocks grow in size with the number of nodes, which may lead to 

overhead in highly distributed environments. 

 

Lamport Timestamps 

Lamport timestamps are logical clocks that use counters instead of actual time to represent the 

order of events. Each process in a system maintains a counter, incrementing it with each event. 

This timestamp is attached to messages and helps order events in a distributed setup. 

Advantages: Simple to implement and suitable for distributed systems where only event order is 

important. 

Disadvantages: Only provides partial ordering of events and may not handle concurrent updates 

well. 

 

Commit Hashes in Version Control Systems (e.g., Git) 

Systems like Git use commit hashes (a combination of the content and parent history) to track 

versions. Each commit is uniquely identified, allowing for branching, merging, and comparison. 

Advantages: Efficient for systems requiring detailed version history with branching. 

Disadvantages: Not suitable for real-time versioning due to its complexity and reliance on 

content history. 
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2. CAP Theorem 

The basic statement of the CAP theorem is that, given the three properties of 

Consistency, Availability, and Partition tolerance, you can only get two. Obviously 

this depends very much on how you define these three properties, and differing 

opinions have led to several debates on what the real consequences of the CAP 

theorem are. 

Consistency is pretty much as we’ve defined it so far. Availability has a 

particular meaning in  the context of CAP it means that if you can talk to a node in 

the cluster, it can read and write data. That’s subtly different from the usual 

meaning, which we’ll explore later. Partition tolerance  means that the cluster can 

survive communication breakages in the cluster that separate the cluster into multiple 

partitions unable to communicate with each other.  

 

 

 

 

 

 

 

 

 

 

A single-server system is the obvious example of a CA system a system that 

has Consistency and Availability but not Partition tolerance. A single machine can’t 

partition, so it does not have to worry about partition tolerance. There’s only one 

node so if it’s up, it’s available. Being up and keeping consistency is reasonable. 

This is the world that most relational database systems live in. 
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