

Internal Assessment Test 2 – November 2024

				miternar / i	ssessment res	~ 2	1101011001	2021				
Sub:	NoS	QL databa	se				Sub Code:	21CS745	Branch	: CSE	-	
Date:	/1	/11/2024 Duration: 90 mins Max Marks: 50 Sem/Sec: VII/A,B,C						OBE				
Answer any 5 FIVE FULL Questions											CO	RBT
1	Imag	ine you'ı	re designing	g a data pro	ocessing syste	m fo	or a compar	ny that freque	ently	[10]	CO2	L2
	updates its datasets. How would you apply the incremental MapReduce process to											
		efficiently handle these updates, and what strategies would you use to scale a key-										
	value store for managing large, growing data volumes? Provide detailed								aned			
	explanations and examples to support your approach. Incremental Map-Reduce process -5 marks											
	scali	scaling in key-value store-5 marks										
2	Desc	ribe Map	-reduce pro	cess to com	pare the sales	of p	roducts for	each month i	n	[10]	CO2	L3
	2011 to the prior year. Use suitable diagrams.											
	Map-reduce process with description -8 marks											
	Diagrams-2 marks											
2	0			11.4 1		1	11	(11)	1	[10]	<u> </u>	L3
3	Suppose we want to return all the documents in an order collection (all rows in the										CO3	LS
	order table. Write down SQL and MongoDB queries for:											
	i)	Selectin	g the orders	for a single	customerId of	8830	2c5b4e5b(3	3 marks)				
	ii)	ii) Selecting orderId and orderDate for one customer (3 marks)										
	iii)		-		one of the item			ame like				
)	< 2	oring $(2+2 \text{ m})$									
				, , , , , , , , , , , , , , , , , , , ,								

4	Describe how key-value stores handle consistency and transactions, and explain the process involved in creating buckets within these stores. Consistency in key-value store, bucket creation – 3+3 marks Transaction processing in key-value store- 4 marks	[10]	CO3	L2
5	Identify the situations where document databases are i) applicable ii) not advisable. Justify your answer. document databases are applicable with justification - 5 marks Not advisable with justification -5 marks	[10]	202	L3
6	Define a key-value store and illustrate it with an example. Also, identify and explain two important features of key-value stores. key-value store with example- 3+3 marks two features of key-value store - 4 marks	[10]	CO3	L2

1. Incremental MapReduce and Scaling in Key-Value Store

a) Incremental MapReduce Process

Incremental MapReduce processes efficiently handle updates to datasets by minimizing recomputation. Here's how it can be applied:

- 1. **Identify Updated Data:** Divide the dataset into incremental and non-incremental parts. Only process new or modified data since the last computation.
- 2. **Reuse Intermediate Results:** Store results from previous computations. Use these precomputed results to avoid reprocessing unchanged data.
- 3. Combine New Results: Merge the results from new data with stored intermediate outputs.

Example:

• In a sales database, if new sales records are added daily, only the new data is processed, and the existing aggregated results are reused.

b) Scaling in Key-Value Store

Key-value stores are scalable by design, but the following strategies enhance their scalability for large data volumes:

- 1. Partitioning (Sharding):
 - Distribute keys across multiple servers. Each server manages a subset of keys.
 - Example: Hash-based partitioning divides the keys based on a hash function.

2. Replication:

- Create copies of data across multiple nodes to ensure high availability.
- Example: Redis and Cassandra replicate data to handle node failures.

3. Caching:

- Use in-memory caching to speed up data retrieval.
- Example: Use tools like Redis as a cache for frequently accessed keys.

4. Consistent Hashing:

- Ensures even distribution of data when nodes are added or removed.
- Example: Systems like DynamoDB use consistent hashing to manage partitions.
- 5. Write-Ahead Logs:
 - Log changes before applying them to maintain consistency during scaling operations.

2. MapReduce Process for Comparing Sales Data

MapReduce Process

- 1. Map Phase:
 - \circ $\,$ Read the sales records for each month in 2011 and 2010.
 - Emit (productID, salesAmount) pairs for each record.
- 2. Reduce Phase:
 - Aggregate sales amounts for each productID by year.
 - Compare sales for 2011 and 2010. Emit the difference or percentage change.

Example Pseudocode:

```
python
Copy code
# Mapper
for record in sales_data:
    emit(productID, (year, salesAmount))
```

Reducer
for productID, values in grouped_data:

```
total_2011 = sum(value[1] for value in values if value[0] == 2011)
total_2010 = sum(value[1] for value in values if value[0] == 2010)
emit(productID, total_2011 - total_2010)
```

3. SQL and MongoDB Queries for Orders Collection

i) Selecting Orders by CustomerID:

```
SQL:
sql
Copy code
SELECT * FROM orders WHERE customerID = '883c2c5b4e5b';
```

•

```
MongoDB:
javascript
Copy code
db.orders.find({ customerID: "883c2c5b4e5b" });
```

•

ii) Selecting OrderID and OrderDate for One Customer:

```
SQL:
sql
Copy code
SELECT orderID, orderDate FROM orders WHERE customerID = '883c2c5b4e5b';
```

```
•
```

MongoDB:

```
javascript
Copy code
db.orders.find(
  { customerID: "883c2c5b4e5b" },
   { orderID: 1, orderDate: 1, _id: 0 }
);
```

•

iii) Query for All Orders Where One Item Has a Specific Name:

```
SQL:
sql
Copy code
SELECT * FROM orders WHERE itemName = 'SpecificName';
```

•

MongoDB: javascript •

4. Consistency and Transactions in Key-Value Stores

a) Consistency in Key-Value Store:

- Eventual Consistency: Changes are propagated across replicas asynchronously. Ensures high availability. Example: Amazon DynamoDB.
- Strong Consistency: Ensures that all reads return the most recent write. Example: Redis in specific configurations.

b) Bucket Creation Process:

- Buckets are logical groupings of key-value pairs.
- Process:
 - 1. Define the bucket.
 - 2. Assign replication and partitioning policies.
 - 3. Store and retrieve objects using unique keys.

c) Transaction Processing:

- Use atomic operations for read-modify-write cycles.
- Example in Redis: Multi commands ensure atomic execution.

5. Applicability of Document Databases

a) Situations Where Document Databases Are Applicable:

1. Schema Flexibility:

- Example: Applications with dynamic or evolving data models.
- 2. Nested Data:
 - Example: E-commerce platforms storing order and customer data.
- 3. Real-Time Analytics:
 - Example: Log analysis systems like MongoDB.

b) Situations Where They Are Not Advisable:

- 1. Complex Transactions:
 - Use relational databases for multi-row or multi-table operations.
- 2. Strict Schema Requirements:
 - Example: Financial systems requiring fixed schemas.

3. High Consistency Needs:

• Use databases like PostgreSQL for strict consistency.

6. Key-Value Store and Its Features

a) Definition and Example:

• Definition:

A key-value store stores data as key-value pairs where keys are unique identifiers.

Example:

Redis storing user sessions: plaintext Copy code Key: "user:1234" Value: "{name: 'John', age: 30}"

•

b) Features of Key-Value Stores:

- 1. Scalability:
 - Horizontal scaling with sharding.
- 2. Performance:
 - Optimized for fast reads and writes.