
1. Incremental MapReduce and Scaling in Key-Value Store

a) Incremental MapReduce Process
Incremental MapReduce processes efficiently handle updates to datasets by minimizing recomputation.
Here's how it can be applied:

1. Identify Updated Data: Divide the dataset into incremental and non-incremental parts. Only
process new or modified data since the last computation.

2. Reuse Intermediate Results: Store results from previous computations. Use these precomputed
results to avoid reprocessing unchanged data.

3. Combine New Results: Merge the results from new data with stored intermediate outputs.

Example:

● In a sales database, if new sales records are added daily, only the new data is processed, and the
existing aggregated results are reused.

b) Scaling in Key-Value Store
Key-value stores are scalable by design, but the following strategies enhance their scalability for large data
volumes:

1. Partitioning (Sharding):
○ Distribute keys across multiple servers. Each server manages a subset of keys.
○ Example: Hash-based partitioning divides the keys based on a hash function.

2. Replication:
○ Create copies of data across multiple nodes to ensure high availability.
○ Example: Redis and Cassandra replicate data to handle node failures.

3. Caching:
○ Use in-memory caching to speed up data retrieval.
○ Example: Use tools like Redis as a cache for frequently accessed keys.

4. Consistent Hashing:
○ Ensures even distribution of data when nodes are added or removed.
○ Example: Systems like DynamoDB use consistent hashing to manage partitions.

5. Write-Ahead Logs:
○ Log changes before applying them to maintain consistency during scaling operations.

2. MapReduce Process for Comparing Sales Data

MapReduce Process

1. Map Phase:
○ Read the sales records for each month in 2011 and 2010.
○ Emit (productID, salesAmount) pairs for each record.

2. Reduce Phase:
○ Aggregate sales amounts for each productID by year.
○ Compare sales for 2011 and 2010. Emit the difference or percentage change.

Example Pseudocode:

python
Copy code
Mapper
for record in sales_data:

emit(productID, (year, salesAmount))

Reducer
for productID, values in grouped_data:

total_2011 = sum(value[1] for value in values if value[0] == 2011)
total_2010 = sum(value[1] for value in values if value[0] == 2010)
emit(productID, total_2011 - total_2010)

3. SQL and MongoDB Queries for Orders Collection

i) Selecting Orders by CustomerID:

SQL:
sql
Copy code
SELECT * FROM orders WHERE customerID = '883c2c5b4e5b';

●

MongoDB:
javascript
Copy code
db.orders.find({ customerID: "883c2c5b4e5b" });

●

ii) Selecting OrderID and OrderDate for One Customer:

SQL:
sql
Copy code
SELECT orderID, orderDate FROM orders WHERE customerID = '883c2c5b4e5b';

●

MongoDB:
javascript
Copy code
db.orders.find(
{ customerID: "883c2c5b4e5b" },
{ orderID: 1, orderDate: 1, _id: 0 }

);

●

iii) Query for All Orders Where One Item Has a Specific Name:

SQL:
sql
Copy code
SELECT * FROM orders WHERE itemName = 'SpecificName';

●

MongoDB:
javascript

Copy code
db.orders.find({ "items.name": "SpecificName" });

●

4. Consistency and Transactions in Key-Value Stores

a) Consistency in Key-Value Store:

● Eventual Consistency:
Changes are propagated across replicas asynchronously. Ensures high availability. Example:
Amazon DynamoDB.

● Strong Consistency:
Ensures that all reads return the most recent write. Example: Redis in specific configurations.

b) Bucket Creation Process:

● Buckets are logical groupings of key-value pairs.
● Process:

1. Define the bucket.
2. Assign replication and partitioning policies.
3. Store and retrieve objects using unique keys.

c) Transaction Processing:

● Use atomic operations for read-modify-write cycles.
● Example in Redis: Multi commands ensure atomic execution.

5. Applicability of Document Databases

a) Situations Where Document Databases Are Applicable:

1. Schema Flexibility:
○ Example: Applications with dynamic or evolving data models.

2. Nested Data:
○ Example: E-commerce platforms storing order and customer data.

3. Real-Time Analytics:
○ Example: Log analysis systems like MongoDB.

b) Situations Where They Are Not Advisable:

1. Complex Transactions:
○ Use relational databases for multi-row or multi-table operations.

2. Strict Schema Requirements:
○ Example: Financial systems requiring fixed schemas.

3. High Consistency Needs:
○ Use databases like PostgreSQL for strict consistency.

6. Key-Value Store and Its Features

a) Definition and Example:

● Definition:
A key-value store stores data as key-value pairs where keys are unique identifiers.

Example:
Redis storing user sessions:
plaintext
Copy code
Key: "user:1234"
Value: "{name: 'John', age: 30}"

●

b) Features of Key-Value Stores:

1. Scalability:
○ Horizontal scaling with sharding.

2. Performance:
○ Optimized for fast reads and writes.

