

USN	1	С	R	2	1	Ι	S		

Internal Assessment Test II- Nov. 2024

Sub:	Cryptography and Network Security					Sub Code:	21IS71 Branch:		ISE		
Date:	/11/2024	Duration:	90 mins	Max Marks:	50	Sem/ Sec:	VII/ A, B, C		OBE		
Answer any FIVE FULL questions								MARKS	СО	RBT	
1	1 Explain with neat diagram control vector encryption and decryption.							[10]	CO3	L2	
2 Explain Elgamal cryptosystem. Perform encryption and decryption using $q = 19$, $a = 10$, $k = 6$, $M = 17$, $XA = 5$ and $YA = 3$.							[10]	CO2	L3		
3	3 Explain how symmetric key distribution works using symmetric encryption.								[10]	CO3	L2
4	4 Describe a typical key distribution scenario using a Key Distribution Center (KDC)							[10]	CO3	L2	
5	5 Explain various techniques proposed for the distribution of public keys.						[10]	CO3	L2		
	a. How does the Diffie-Hellman algorithm work?							[6]	CO2	L2	
6	b. How can Diffie-Hellman mitigate Man-in-the-Middle attacks?						[4]	CO2	L2		

CI

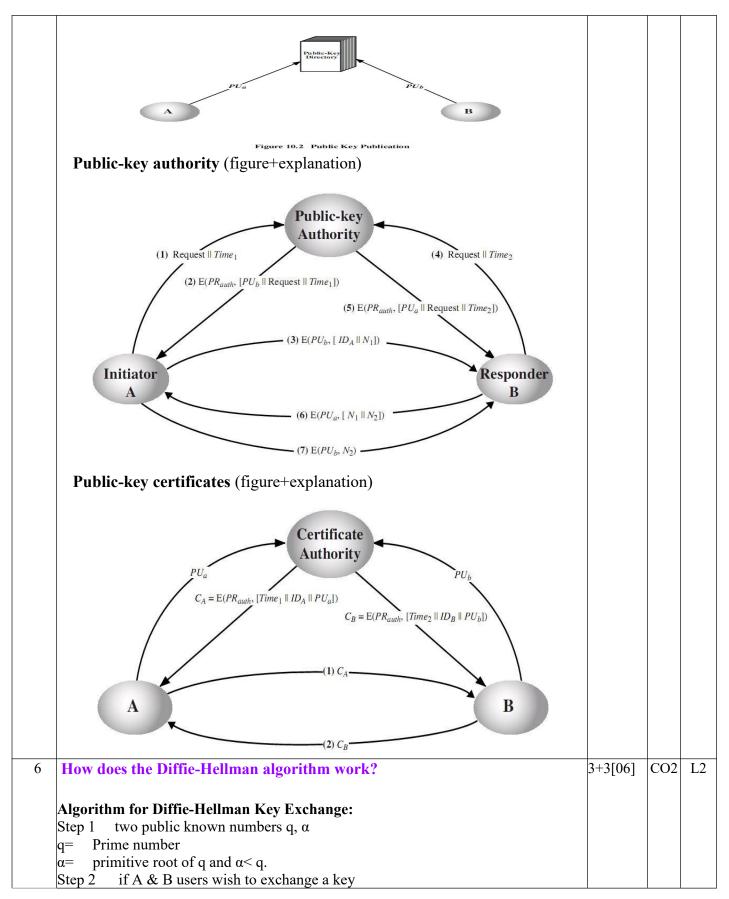
CCI

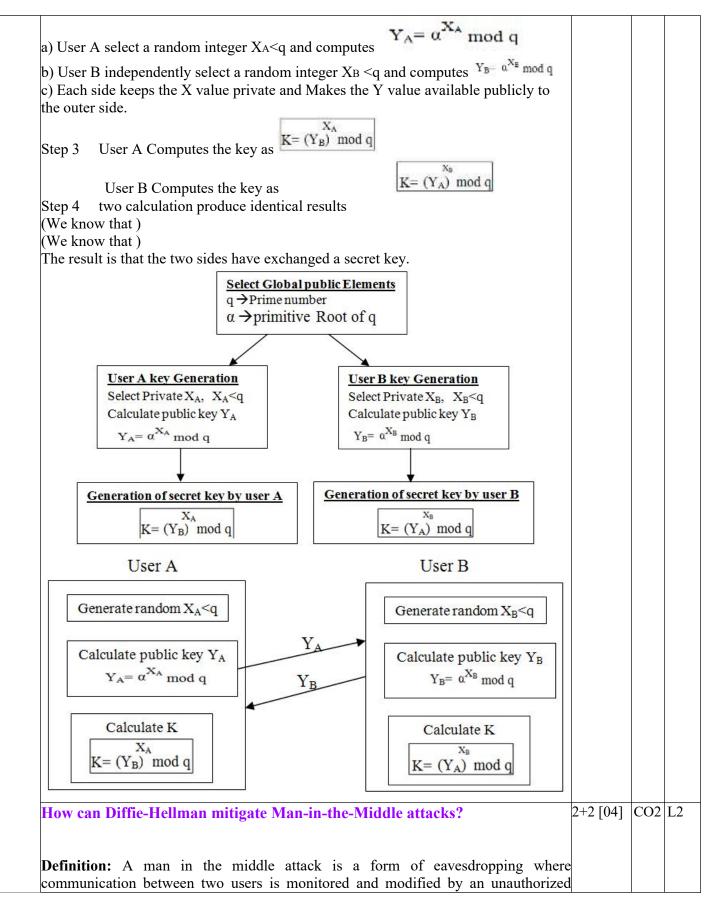
USN 1 C R 2 1 I S

Internal Assessment Test II- Nov. 2024

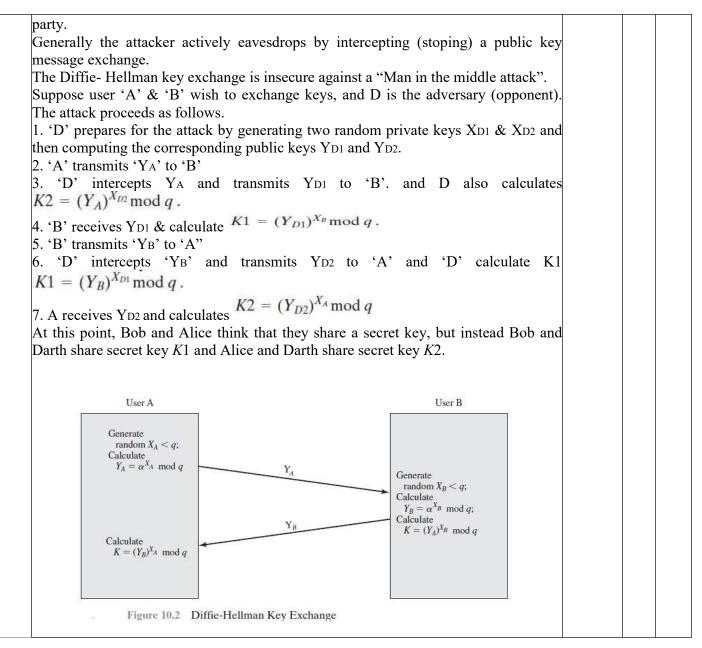
Sub:	: Cryptography and Network Security					Sub Code:	21IS71 Branch:		ISE		
Date:	/11/2024	Duration:	90 mins	Max Marks:	50	Sem/ Sec:	VII/ A, B, C			OBI	Ξ
Answer any FIVE FULL questions								MARKS	СО	RBT	
1 Explain with neat diagram control vector encryption and decryption.								[10]	CO3	L2	
2 Explain Elgamal cryptosystem. Perform encryption and decryption using $q = 19$, $a = 10$, $k = 6$, $M = 17$, $XA = 5$ and $YA = 3$.							, k	[10]	CO2	L3	
3	Explain how symmetric key distribution works using symmetric encryption.								[10]	CO3	L2
4	Describe a typical key distribution scenario using a Key Distribution Center (KDC)						DC)	[10]	CO3	L2	
5	Explain various techniques proposed for the distribution of public keys.							[10]	CO3	L2	
6	a. How does the Diffie-Hellman algorithm work?							[6]	CO2	L2	
0	b. How can Diffie-Hellman mitigate Man-in-the-Middle attacks?							[4]	CO2	L2	

HOD




Sub:	Cryptography and Network Security Sub Cod		21IS71	Branch:	ISE	
	Answer any FIVE FULL questions		I	MARKS	CO	RBT
	Explain with neat diagram control vector encryption and In this scheme, each session key has an associated control a number of fields that specify the uses and restrictions The length of the control vector may vary. The control vector is cryptographically coupled with the key generation at the KDC. As a first step, the control vector hash function that produces a value whose length is equal length. In essence, a hash function maps values from a smaller range with a reasonably uniform spread. Thus, for in the range 1 to 100 are hashed into numbers in approximately 10% of the source values should map int values. The hash value is then XORed with the master output that is used as the key input for encrypting the sessi	l vector for tha ey at th r is pas to the e a larger examp the ran to each r key t	consisting t session ke e time of ke sed through ncryption k range into le, if numbe nge 1 to of the targ o produce	2+4+4 of[10] ey. ey n a tey o a ers 10, get	CO3	
	Hash value = H = h(CV) Key input = Km \oplus H Ciphertext = E([Km \oplus H], Ks) where is the master key and is the session key. The session plaintext by the reverse operation: D([Km \oplus H], E([Km \oplus H], Ks)) Control Master Session Control Master vector key key vector key	r En	recovered i	in		
	Function Encrypted session key	Decryption Function ession ke	y			
	(a) Control vector encryption (b) Control Figure 14.6 Control Vector Encryption and Decryption When a session key is delivered to a user from the KDC, it		ompanied			

 by the control vector in clear form. The session key can be recovered only by using both the master key that the user shares with the KDC and the control vector. Thus, the linkage between the session key and its control vector is maintained. Use of the control vector has two advantages over use of an 8-bit tag. First, there is no restriction on length of the control vector, which enables arbitrarily complex controls to be imposed on key use. Second, the control vector is available in clear form at all stages of operation. Thus, control of key use can be exercised in multiple locations. 			
Explain Elgamal cryptosystem. Perform encryption and decryption using $q = 19$, $a = 10$, $k = 6$, $M = 17$, $XA = 5$ and $YA = 3$. Elgamal cryptosystem description. Encryption: K=7, $k=6$, $C1=11$, $C2=5Ciphertext= (11,5)Decryption:k=7$, K inverse= 11 M=17	4+6 [10]	CO2	L3
 Explain how symmetric key distribution works using symmetric encryption. For symmetric encryption to work, the two parties to an exchange must share the same key, and that key must be protected from access by others. Therefore, the term that refers to the means of delivering a key to two parties who wish to exchange data, without allowing others to see the key. For two parties A and B, key distribution can be achieved in a number of ways, as follows: A can select a key and physically deliver it to B. A third party can select the key and physically deliver it to A and B. If A and B have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old key. If A and B each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B. Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact between recipient and key issuer. This is fine for link encryption where devices & keys occur in pairs, but does not scale as number of parties who wish to communicate grows. 3 is mostly based on 1 or 2 occurring first. A third party, whom all parties trust, can be used as a trusted intermediary to mediate the establishment of secure communications between them (4). Must trust intermediary not to abuse the knowledge of all session keys. As number of parties grow, some variant of 4 is only practical solution to the huge growth in number of keys potentially needed. 		CO3	L2


Ι	Describe a typical key distribution scenario using a Key Distribution Center	5+5 [10]	CO3	L2
(KDC).			
k	Xey distribution centre:			
	The use of a key distribution center is based on the use of a hierarchy of			
k	eys. At a minimum, two levels of keys are used.			
	Communication between end systems is encrypted using a temporary key,			
0	ften referred to as a Session key.			
	Typically, the session key is used for the duration of a logical connection			
a	nd then discarded			
	Master key is shared by the key distribution center and an end system or			
	ser and used to encrypt the session key.			
k	Xey Distribution Scenario:			
	Key Distribution Center (KDC)			
I	(1) $ID_A \parallel ID_B \parallel N_1$			
ν	ey distribution (2) $E(K_a, [K_s \parallel ID_A \parallel ID_B \parallel N_1]) \parallel E(K_b, [K_s \parallel ID_A])$			
	$(2) E(K_a, [K_s \parallel ID_A \parallel ID_B \parallel N_1]) \parallel E(K_b, [K_s \parallel ID_A])$			
	$(3) \operatorname{E}(K_b, [K_s \parallel ID_A])$			
	A NOT S AD			
	Initiator Responder			
	AB			
	$(4) \operatorname{E}(K_s, N_2)$			
	Authentication (5) $E(K_s, f(N_2))$			
ł	igure 14.3 Key Distribution Scenario			
L	et us assume that user A wishes to establish a logical connection with B and			
re	equires a one-time session key to protect the data transmitted over the			
	onnection. A has a master key, Ka, known only to itself and the KDC;			
si	milarly, B shares the master key Kb with the KDC. The following steps			
	ccur:			
1	A issues a request to the KDC for a session key to protect a logical			
	onnection to B. The message includes the identity of A and B and a unique			
	lentifier, N ₁ , for this transaction, which we refer to as a nonce . The nonce			
1	ay be a timestamp, a counter, or a random number; the minimum equirement			
	that it differs with each request. Also, to prevent masquerade, it should be			
	ifficult for an opponent to guess the nonce. Thus, a random number is a good			
	noice for a nonce.			
	The KDC responds with a message encrypted using Ka Thus, A is the only			
	ne who can successfully read the message, and A knows that it originated at			
tł	the KDC. The message includes two items intended for A:			
1	The one-time session key, Ks, to be used for the session			

	The original request message, including the nonce, to enable A to match			
	this			
	response with the appropriate request			
	Thus, A can verify that its original request was not altered before reception by			
	the KDC			
	and, because of the nonce, that this is not a replay of some previous request.			
	In addition, the message includes two items intended for B:			
	The one-time session key, Ks to be used for the session			
	An identifier of A (e.g., its network address), IDA			
	These last two items are encrypted with Kb (the master key that the KDC			
	shares with B).			
	They are to be sent to B to establish the connection and prove A's identity.			
	3. A stores the session key for use in the upcoming session and forwards to B			
	the information that originated at the KDC for B, namely, $E(K_b, [K_s \parallel ID_A])$.			
	Because this information is encrypted with Kb, it is protected from			
	eavesdropping. B now knows the session key (Ks), knows that the other party			
	is A (from IDA), and knows that the information originated at the KDC			
	(because it is encrypted using Kb).			
	At this point, a session key has been securely delivered to A and B, and they			
	may begin their protected exchange. However, two additional steps are			
	desirable:			
	4. Using the newly minted session key for encryption, B sends a nonce, N ₂ , to			
	A.			
	5. Also using K_s , A responds with $f(N_2)$, where f is a function that performs			
	some transformation on N ₂ (e.g., adding one).			
	These steps assure B that the original message it received (step 3) was not a			
	replay.			
	Note that the actual key distribution involves only steps 1 through 3 but that			
	steps 4 and 5, as well as 3, perform an authentication function.			
5	Explain various techniques proposed for the distribution of public keys.	2.5 x 4	CO3	L2
		[10]		
	Several techniques have been proposed for the distribution of public keys,			
	which can mostly be grouped into the categories shown.			
	Public announcement			
	Publicly available directory			
	Public-key authority			
	Public-key certificates			
	Public announcement (figure+ explanation)			
	A B			
	PU _a PU _a PU _b			
	Figure 10.1 Uncontrolled Public Key Distribution			
	Publicly available directory (figure+ explanation)			

