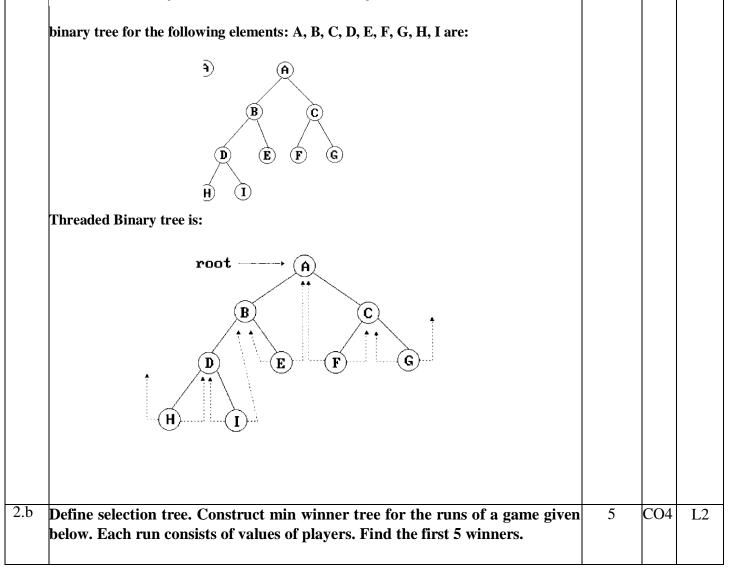


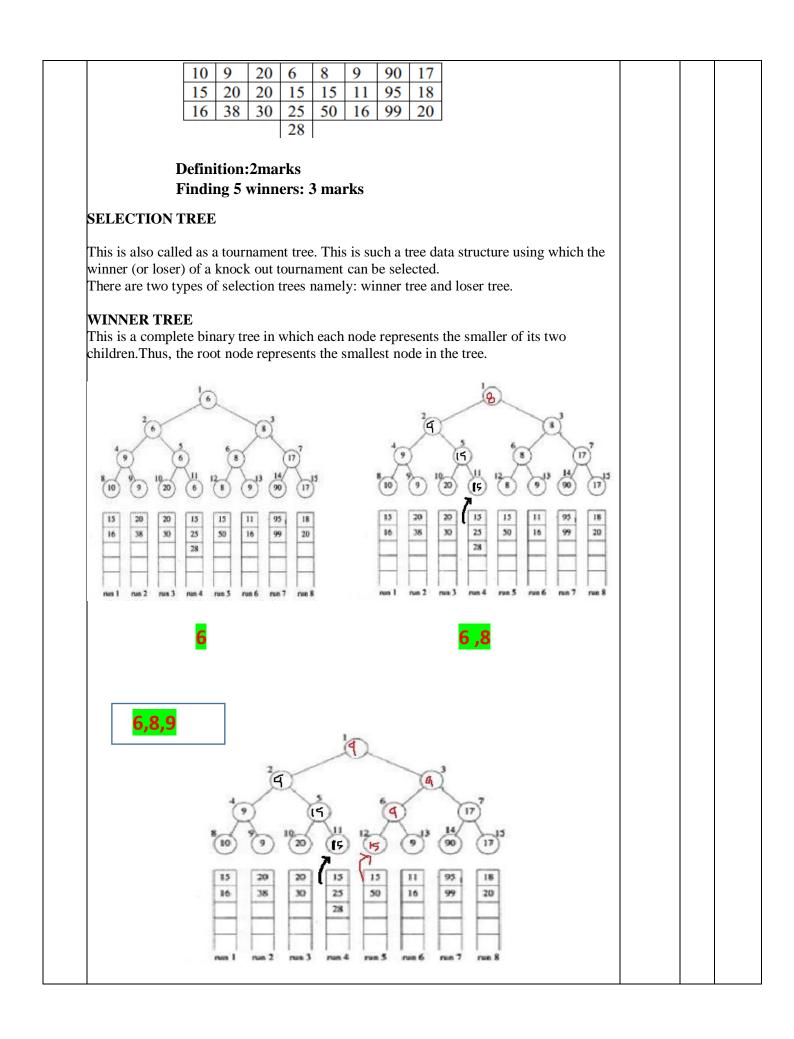
USN					

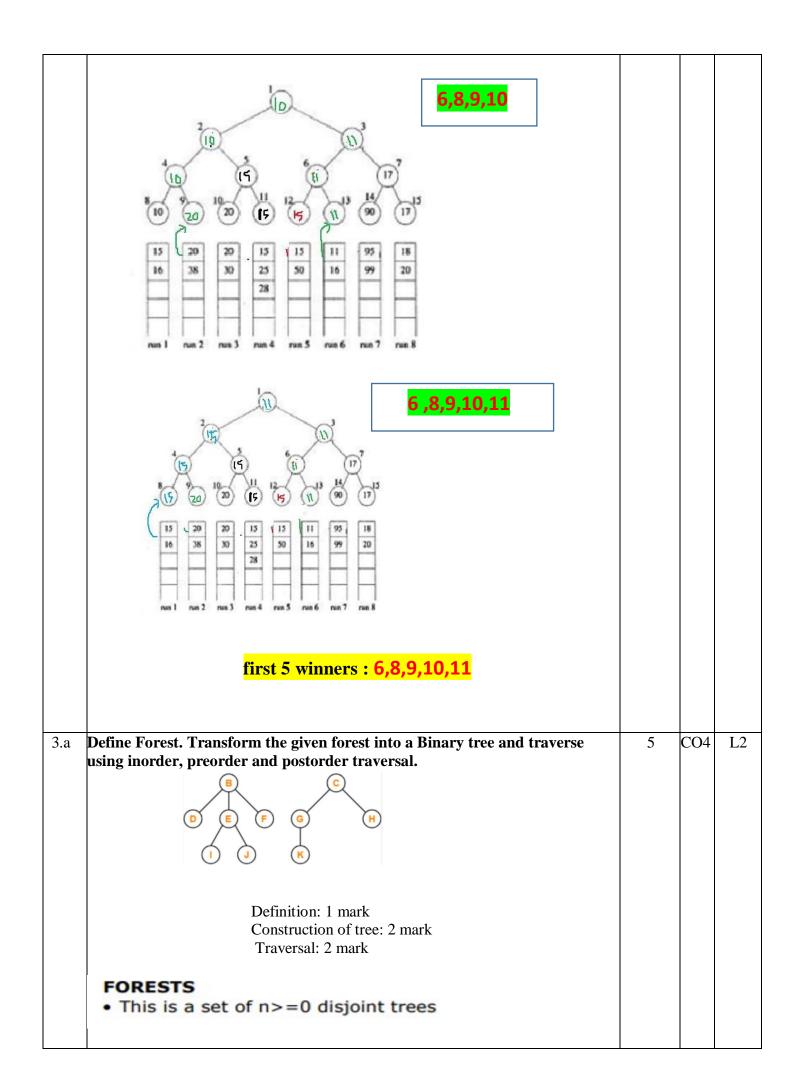
Internal Assessment Test 2 - Dec 2024

Sub:	Data Structur					Sub Code:	BCS304	Bra	nch: IS	SE	
Date:	14-12-2024	Duration:	90 min's	Max Marks:	50	Sem/Sec:	III / A,B,C			~ ~	BE
1	1			FIVE FULL Qu					MARK		RBT
1.a		binary tree	e from th	e Post-order a	and	In-order se	quence given		5	CO4	L2
	below		T								
	In-order: Gl Post-order: 0										
	1 051-01001.	GIIDDIEF	CA								
			Defini	tion: 1 mark							
				ruction of tre	e: 4 :	mark					
	ALGORITH	IM:									
	To construct	a binary tre	e from gi	ven In-order	and l	Post-order	sequences:				
	1. Identi	fy the root	from the l	last element of	the	Post-order s	sequence.				
		•					left of the roo	ot in			
	the In	-order sequ	ience forn	n the left subtr	ee, a	nd elements	to the right fo	orm			
		ght subtree.									
	3. Recur	sively repe	at this pro	ocess for the le	ft an	d right subt	rees.				
				A							
				/	1						
				в	c						
				D	C						
				/ \	/ `	λ					
				D A	I	F					
				/ \							
				H G							
1.b	Define Bina	ry Search	tree. Co	onstruct a bi	nary	search tr	ee (BST) for	• the	5	CO4	L3
	following ele	ments: 10	0, 85, 45,	55, 120, 20, 7	0, 90), 115, 65, 1	130, 145. Trav	verse			
	using in-or	der, pre-o	order, ai	nd post-orde	er t	raversal to	echniques. V	Vrite			
	recursive C f	functions f	or the sau	me.							
			De	efinition: 1 ma	ark						
			Co	onstruction of	tree	: 1 marks					
			Tr	aversal and c	fun	ction: 3 ma	rks				
	A Binary Sea	arch Tree	(BST) is a	a type of binar	y tre	e where:					
	1 Each	node contai	ine a kou								
			•	of a node is le	se th	an the key i	n the node				
							key in the nod	e.			

4. Both the left and right subtrees must also be binary search trees. 100 / \ 85 120 / \ / \ 45 90 115 130 / \ / ١ 20 55 70 145 / 65 Traversals In-order Traversal: Visit left subtree \rightarrow Root \rightarrow Right subtree. Output: 20, 45, 55, 65, 70, 85, 90, 100, 115, 120, 130, 145 **Pre-order Traversal:** Visit Root \rightarrow Left subtree \rightarrow Right subtree. Output: 100, 85, 45, 20, 55, 70, 65, 90, 120, 115, 130, 145 **Post-order Traversal:** Visit left subtree \rightarrow Right subtree \rightarrow Root. Output: 20, 65, 70, 55, 45, 90, 85, 115, 145, 130, 120, 100 **RECURSIVE C Functions:** void inOrder(Node* root) { if (root != NULL) { inOrder(root->left); printf("%d ", root->data); inOrder(root->right); } void preOrder(Node* root) { if (root != NULL) { printf("%d ", root->data); preOrder(root->left); preOrder(root->right); } void postOrder(Node* root) { if (root != NULL) { postOrder(root->left); postOrder(root->right); printf("%d ", root->data); } 5 CO4 L2 2.a Define the Threaded binary tree. Construct Threaded binary for the following elements: A, B, C, D, E, F, G, H, I.


Definition : 2 marks Construction of tree: 3 marks


A **Threaded Binary Tree** is a binary tree where null pointers in leaf nodes are replaced with "threads" to allow in-order traversal without the use of recursion or a stack.


In a threaded binary tree, each node has an additional pointer called a thread, which points to either its in-order predecessor or successor. This allows us to efficiently traverse the tree without using recursion or a stack.

ALGORITHM:

- (1) If $ptr \rightarrow left_child$ is null, replace $ptr \rightarrow left_child$ with a pointer to the node that would be visited before ptr in an inorder traversal. That is we replace the null link with a pointer to the *inorder predecessor* of ptr.
- (2) If *ptr* -> *right_child* is null, replace *ptr* -> *right_child* with a pointer to the node that would be visited after *ptr* in an inorder traversal. That is we replace the null link with a pointer to the *inorder successor* of *ptr*.

Transforming Forest to Binary tree:			
Binary Tree Representation:			
Inorder: DIJEFBKGHC			
Preorder: BDEIJFCGKH			
Postorder: JIFEDKHGCB			
3.b Define the leftist tree. Give its declaration in C. Check whether the giver	5	CO4	L3
binary tree is a leftist tree or not. Explain your answer.			
Definition:1 mark Declaration:1mark Finding whether leftist tree or not:3 marks			
A leftist tree is a binary tree such that if it is not empty, then shortest (LeftChild (x) \geq shortest (RightChild (x)) for every internal node x.			
C declaration			
Struct node			
{ int data;			

	struct node *left; struct node *right; int rank;			
	};			
	$\binom{1}{2}$			
	205 (8 - 1/2) (5) 2 ×			
	2 2 2'			
	1/9/ 1/3) (20) (25) 2(4) (5) 3 (6) (4)			
	TT TT O DI DI			
	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =			
	XXX X A A			
	The is called free The is not leftered free			
	14 is leftit the			
4.a	Define Graph. Explain the adjacency matrix and adjacency list	5	CO4	L2
	representation for a below Graph.			
	1 2 0 Scheme for 5 Marks:			
	Scheme for 5 Marks:			
	1. Definition of Graph: 1 Mark			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list for the given graph 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A graph can be represented as G=(V,E)G = (V, E)G=(V,E), where VVV is 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A graph can be represented as G=(V,E)G = (V, E)G=(V,E), where VVV is the set of vertices and EEE is the set of edges. 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A graph can be represented as G=(V,E)G = (V, E)G=(V,E), where VVV is the set of vertices and EEE is the set of edges. Adjacency Matrix Representation: 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A graph can be represented as G=(V,E)G = (V, E)G=(V,E), where VVV is the set of vertices and EEE is the set of edges. Adjacency Matrix Representation: An adjacency matrix is a 2D array of size V×VV \times VV×V (where 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A graph can be represented as G=(V,E)G = (V, E)G=(V,E), where VVV is the set of vertices and EEE is the set of edges. Adjacency Matrix Representation: An adjacency matrix is a 2D array of size V×VV \times VV×V (where VVV is the number of vertices). 			
	 Definition of Graph: 1 Mark Adjacency Matrix Explanation: 2 Marks Description of adjacency matrix representation Illustration of matrix for the given graph Adjacency List Explanation: 2 Marks Description of adjacency list representation Illustration of adjacency list for the given graph Solution: Definition of Graph: A graph is a data structure consisting of a set of vertices (or nodes) and a set of edges connecting these vertices. It can be directed or undirected. A graph can be represented as G=(V,E)G = (V, E)G=(V,E), where VVV is the set of vertices and EEE is the set of edges. Adjacency Matrix Representation: An adjacency matrix is a 2D array of size V×VV \times VV×V (where 			

	 0 if there is no edge. For the given graph: Vertices: 0, 1, 2 Edges: (1→2), (1→0), (2→0) Adjacency Matrix: [000101100]\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ \end{bmatrix}011000010 Adjacency List Representation: An adjacency list is an array where each index corresponds to a vertex, and the value at that index is a list of all vertices it connects to. For the given graph: Vertex 1 connects to vertices 0 and 2. Vertex 2 connects to vertex 0. Vertex 0 has no outgoing edges. Adjacency List: 0: [] 1: [0, 2] 2: [0] 			
4.b	Explain Elementary Graph operations. Write the DFS and BFS for the below graph.	5	CO4	L2
	 Scheme for 5 Marks: 1. Definition and Explanation of Elementary Graph Operations: 2 Marks 2. DFS (Depth First Search) Traversal for the Given Graph: 2 Marks 3. BFS (Breadth First Search) Traversal for the Given Graph: 1 Mark 			
	 Solution: Elementary Graph Operations: Elementary operations on graphs include: Adding a Vertex: Add a new vertex vvv to the graph GGG without connecting it to any other vertices. Adding an Edge: Add an edge eee between two vertices uuu and vvv (directed or undirected) in the graph. Deleting a Vertex: Remove a vertex vvv from GGG, including all edges connected to vvv. Deleting an Edge: Remove an edge eee between vertices uuu and vvv from the graph. 			
	 DFS (Depth First Search): DFS explores as far as possible along each branch before backtracking. For the given graph, starting from vertex a: Traversal Order: a → b → f → d → c → g → e Steps: Start at a and visit it. Move to an adjacent vertex (b) and continue. From b, go to f. Backtrack to b, then go to d. 			

		1	1	
	Backtrack to a, go to c.			
	From c, move to g.			
1.	Finally, visit e.			
BFS (Breadth First Search):			
•	BFS explores all neighbors at the current depth before moving to the next			
	depth.			
•	For the given graph, starting from vertex a:			
Traver	rsal Order: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow f \rightarrow g \rightarrow e$			
Steps:				
	Start at a and visit it.			
	Visit all neighbors of a: b and c.			
	From b, visit its unvisited neighbors: d and f.			
	From c, visit its unvisited neighbor: g.			
5.	Finally, visit e.			
What	is dynamic hashing? Explain the following techniques with examples:	5	CO5	L2
vv nat	i) Dynamic hashing using directories	5	05	L2
	ii) Directory less dynamic hashing			
Schen				
~				
1.	Definition of Dynamic Hashing: 1 Mark			
2.	Dynamic Hashing Using Directories: 2 Marks			
	• Explanation (1 Mark)			
	• Example (1 Mark)			
3.	Directory-less Dynamic Hashing: 2 Marks			
	• Explanation (1 Mark)			
	• Example (1 Mark)			
Soluti	on•			
	tion of Dynamic Hashing:			
	nic hashing is a technique used in database systems to handle situations			
-	the size of the hash table changes dynamically as records are inserted or			
	d. Unlike static hashing, which has a fixed table size, dynamic hashing			
	the structure to grow or shrink as needed, ensuring efficient utilization of			
	ry and faster access to records.			
-	amic Hashing Using Directories:			
Explaı				
•	This method uses a directory that maps a hash value to a bucket.			
•	The directory size doubles as the number of records increases beyond the			
	capacity of the current buckets.			
•	Each directory entry points to a bucket that contains records. A hash function generates a binary value, and the number of bits used			
•	increases dynamically to determine the appropriate directory entry.			
Exam				
-	Assume an initial directory with 2 entries (2 bits):			
	00 -> B0, 01 -> B1, 10 -> B2, 11 -> B3			
2.	Hashing function: $h(key)=key\%4h(key)=key \% 4h(key)=key\%4$.			
	Records $R1(1), R2(5), R3(9)R1(1), R2(5), R3(9)R1(1), R2(5), R3(9)$ are			
	hashed:			
	○ $R1(1\%4=1)R1(1\%4=1)R1(1\%4=1) \rightarrow Bucket B1.$			
	○ $R2(5\%4=1)R2(5\%4=1)R2(5\%4=1) \rightarrow Bucket B1.$			
1	○ $R3(9\%4=1)R3(9\%4=1)R3(9\%4=1) \rightarrow Bucket B1.$		1	

	4 If Pucket P1 everflows calit it into two buckets (P1 and P5) and adjust			
	4. If Bucket B1 overflows, split it into two buckets (B1 and B5) and adjust the directory:			
	• New directory size: 00,01,10,11,10100, 01, 10, 11,			
	10100,01,10,11,101.			
	ii) Directory-less Dynamic Hashing:			
	Explanation:			
	• In this method, no directory is maintained. Instead, buckets are linked			
	dynamically.			
	• Buckets themselves grow or split when they overflow, and pointers connect them.			
	 The hash function is recursively applied to determine the bucket for a 			
	record.			
	Example:			
	1. Hashing function $h(\text{key})=\text{key}\%4h(\text{key})=\text{key}\%4h(\text{key})=\text{key}\%4$.			
	2. Insert records R1(1),R2(5),R3(9)R1(1), R2(5), R3(9)R1(1),R2(5),R3(9):			
	○ $R1(1\%4=1)R1(1\%4=1)R1(1\%4=1) \rightarrow Bucket B1.$			
	○ $R2(5\%4=1)R2(5\%4=1)R2(5\%4=1) \rightarrow Bucket B1$ (overflow).			
	Create a new bucket (B2) linked to B1. $P_2(0)(4, 1)P_2(0)(4, 1)P_2(0)(1)P_2(0)(4, 1)P_2$			
	 R3(9%4=1)R3(9 \% 4 = 1)R3(9%4=1) → Bucket B2. 3. Each bucket contains a pointer to the next bucket, avoiding the need for a 			
	central directory.			
	Key Difference:			
	• With directories: Centralized mapping and easier access but requires more			
	memory for directory management.			
	• Without directories: Decentralized and uses less memory but may require			
	sequential searches in linked buckets.			
5.b	Explain Optimal BST with an example.	5	CO5	L2
		5	005	112
	Scheme :			
	1. Definition of Optimal BST: 1 Mark			
	2. Explanation of the Concept: 2 Marks			
	• Construction of the tree based on probabilities.			
	 3. Example of Optimal BST: 2 Marks o Problem setup (1 Mark). 			
	 Problem setup (1 Mark). Solution with steps (1 Mark). 			
	o bolution with steps (1 Mark).			
	Solution:			
	Definition of Optimal BST:			
	An Optimal Binary Search Tree (Optimal BST) is a binary search tree constructed			
	in such a way that the total cost of all the searches is minimized. It is used when			
	the search probabilities of keys are not uniformly distributed. The goal is to minimize the expected search time or cost based on the frequency of access to			
	each key.			
	Explanation of the Concept:			
	• In an Optimal BST, nodes with higher search probabilities (frequently			
	accessed nodes) are placed closer to the root, while those with lower			
	probabilities are placed farther.			
	• Cost of search: The cost of accessing a node is proportional to its depth in the tree and its search probability.			
1	the tree and its search probability.			

collisions increase.			
Linear Probing:			
Explanation:			
Linear probing is an open addressing technique where, upon a collision, the			
algorithm checks the next available slot (in a linear sequence) until an empty slot			
is found. This method ensures that all elements are stored directly in the hash table			
without using additional data structures.			
Example of Linear Probing:			
Problem Setup:			
• Hash table size: 7			
• Hash function: $h(key)=key\%7h(key)=key\%7$			
• Keys to insert: {50,700,76,85,92,73,101}\{50, 700, 76, 85, 92, 73,			
$101 \} \{50,700,76,85,92,73,101\}$			
Step-by-Step Solution:			
1. Insert 50:			
$50\%7=150\\%7=150\%7=1$. Insert 50 at index 1.			
Hash table: [-, 50, -, -, -, -, -].			
2. Insert 700:			
700%7=0700 % 7 = 0700%7=0. Insert 700 at index 0.			
Hash table: [700, 50, -, -, -, -, -].			
3. Insert 76:			
$76\%7=676\ \ 7=676\%7=6$. Insert 76 at index 6.			
Hash table: [700, 50, -, -, -, 76].			
4. Insert 85:			
85%7=185 % 7 = 185%7=1. Collision occurs at index 1.			
Perform linear probing: Check index 2 (empty). Insert 85 at index 2.			
Hash table: [700, 50, 85, -, -, -, 76].			
5. Insert 92: 0.20(7 - 1.02)(7 - 1.020(7 - 1. Collision a course at index 1)			
92%7=192 % 7 = 192%7=1. Collision occurs at index 1.			
Perform linear probing: Check index 2 (occupied), then index 3 (empty). Insert 92 at index 3.			
Hash table: [700, 50, 85, 92, -, -, 76].			
6. Insert 73:			
73%7=373 \% 7 = 373%7=3. Collision occurs at index 3.			
Perform linear probing: Check index 4 (empty). Insert 73 at index 4.			
Hash table: [700, 50, 85, 92, 73, -, 76].			
7. Insert 101:			
$101\%7=3101 \ \% 7 = 3101\%7=3$. Collision occurs at index 3.			
Perform linear probing: Check indices 4, 5 (empty). Insert 101 at index 5.			
Hash table: [700, 50, 85, 92, 73, 101, 76].			
Define hashing. Explain different hashing functions with examples. Discuss	5	CO5	L2
the properties of a good hash function.			
Scheme:			
1. Definition of Hashing: 1 Mark			
2. Explanation of Hashing Functions: 2 Marks			
• Types of hashing functions (1.5 Marks)			
• Examples for hashing functions (0.5 Marks)			
3. Properties of a Good Hash Function: 2 Marks			
Solution:			

	ng is a process of mapping data of arbitrary size to fixed-size values (known h codes) using a mathematical function called a hash function. These hash	
codes	are used as indices to store and retrieve data in a hash table efficiently.	
	ng Functions:	
	ning function transforms input data (keys) into a fixed range of integers	
	values). The goal is to distribute keys uniformly across the hash table to	
mmm	ize collisions.	
Types	of Hashing Functions:	
• •	Division Method:	
	• Formula: $h(key)=key\%table_sizeh(key) = key \%$	
	table_sizeh(key)=key%table_size	
	• Example:	
	• Table size = 7	
	• Keys = $\{10, 20, 30\} \setminus \{10, 20, 30\} \{10, 20, 30\}$	
	 Hash values: 	
	10%7=310 % 7 = 310%7=3, 20%7=620 % 7 = 620%7=6,	
	30%7=230 % 7 = 230%7=2.	
2.	Multiplication Method:	
	\circ Formula: h(key)= table size×(key×Amod 1) h(key) = \lfloor	
	table_size \times (key \times A \mod 1)	
	\rfloorh(key)=[table_size×(key×Amod1)], where 0 <a<10 <="" <<="" a="" td=""><td></td></a<10>	
	10 <a<1 a="" constant.<="" is="" td=""><td></td></a<1>	
	• Example:	
	• Table size = 7, A=0.618A = 0.618A=0.618 (commonly used	
	constant).	
	• Key = 50:	
	$h(50) = [7 \times (50 \times 0.618 \mod 1)] = 2h(50) = \label{eq:h} (50)$	
	$times 0.618 \mod 1$ $rfloor =$	
	$2h(50) = [7 \times (50 \times 0.618 \mod 1)] = 2.$	
3.	Mid-Square Method:	
	• Square the key, extract the middle digits, and use them as the hash	
	value.	
	• Example:	
	• Key = 1234 - $12242 - 1522756122402 - 152275612242 - 1522756 Take$	
	• $12342 = 15227561234^2 = 152275612342 = 1522756$. Take	
	the middle two digits (27). Hash value = 27.	
1		
4.	Folding Method:	
	 Divide the key into equal parts, sum them up, and take the remainder modulo table size. 	
	• Example: • Key = 987654 , Table size = 10	
	• Split into $\{98, 76, 54\} \setminus \{98, 76, 54\} \setminus \{98, 76, 54\}$. Sum =	
	98+76+54=22898+76+54=22898+76+54=228.	
	$\bullet \text{ Hash value} = 228\%10 = 8228 \ \ 10 = 8228\%10 = 8.$	
5	Hashing Based on Strings:	
5.	 Convert characters into ASCII values and apply a mathematical 	
	function.	
	• Example:	
	 Example: String: "ABC" 	

- .
- String: "ABC" ASCII values: 65,66,6765, 66, 6765,66,67 •

	 Hash value = (65+66+67)%table_size=198%table_size(65 + 66 + 67) \% table_size = 198 \% table_size(65+66+67)%table_size=198%table_size. 	
Proper	ties of a Good Hash Function:	
-	Uniform Distribution:	
	A good hash function distributes keys uniformly across the hash table, minimizing clustering and collisions.	
2.	Minimize Collisions:	
	The hash function should reduce the probability of multiple keys mapping to the same index.	
3.	Fast Computation:	
	A good hash function should be computationally efficient to ensure quick insertions and lookups.	
4.	Deterministic:	
	For a given input, the hash function should always produce the same hash value.	
5.	Adaptability:	
	The hash function should perform well for different types and sizes of data.	
6.	Load Balancing:	
	It should distribute the keys evenly regardless of the input pattern.	

CI

CCI

HOD