

USN

Internal Assessment Test 2 – Dec 2024

Sub: Data Structures and Applications Sub Code: BCS304 Branch: CSE

Date: 14-12-2024 Duration: 90 mins
Max

Marks:
50 Sem / Sec: III (A, B & C) OBE

Answer any FIVE FULL Questions
MAR

KS

CO RB

T

1.a) Write recursive C functions for inorder, preorder and postorder traversals of a

binary tree.

6 CO4 L1

1.b) Find all the traversals for the given tree.

4 CO4 L3

 2. a) Define the Threaded binary tree. Explain the construction of threaded binary

trees, with suitable examples.

6 CO4 L2

 2. b) Define Binary Search tree. Construct a binary search tree (BST) for the following

elements: 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.

4 CO4 L3

3. a) Write the C- function to traverse a graph using Depth First Search (DFS). Apply

DFS for the graph given below, starting with f.

6 CO4 L3

3. b) Construct a binary tree from the Post-order and In-order sequence given below

In-order: GDHBAEICF Post-order: GHDBIEFCA

4 CO4 L3

4.a) Define the leftist tree. Give its declaration in C. Check whether the given binary

tree is a leftist tree or not. Explain your answer.

6 CO4 L3

4.b) Define Forest. Transform the given forest into a Binary tree

4 CO4 L2

5.a) What is dynamic hashing? Explain the following techniques with examples:

i. Dynamic hashing using directories

ii. Directory less dynamic hashing

6 CO5 L1

5.b) Construct the hash table to insert the keys: 7, 24, 18, 52, 36, 54, 11, 23 in a chained

hash table of 9 memory locations. Use h(k) = k mod m.

4 CO5 L2

6. a) Define min Leftist tree. Meld the given min leftist trees

6 CO4 L3

6. b) b) Explain the optimal binary search tree with a suitable example. 4 CO5 L1

CI CCI HOD

Internal Assessment Test 2 – Nov 2024

Solution

 Sub Data Structures and Applications Sub code BCS304

 Date 07/11/24 Duration 90 mins Max Marks 50 Sem /Sec III A, B&C

1 a)Write recursive C functions for inorder, preorder and postorder traversals of a binary tree.

Solution:

Preorder Traversal:

void preorder(node *temp)

{

if(temp!=NULL)

{

printf("\t%d",temp->info);

preorder(temp->left);

preorder(temp->right);

}

}

Postorder Traversal:

void postorder(node *temp)

{

if(temp!=NULL)

{

postorder(temp->left);

postorder(temp->right);

printf("\t%d",temp->info);

}

}

Inorder Traversal:

void inorder(node *temp)

{

if(temp!=NULL)

{

inorder(temp->left);

printf("\t%d",temp->info);

inorder(temp->right);

}

}

b)Find all the traversals for the given tree.

Solution:

2 a)Define the Threaded binary tree. Explain the construction of threaded binary trees, with

suitable examples.

Solution:

Threaded binary tree:

A Threaded Binary Tree is a type of binary tree where null pointers in leaf nodes are replaced

with special pointers called threads. These threads provide an efficient way to traverse the tree

without using a stack or recursion.

Rules to follow:

1. If left child NULL it will point its inorder predecessor
2. If right child NULL it will point its inorder successor

b)Define Binary Search tree. Construct a binary search tree (BST) for the following elements:

100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.

Solution:

A Binary Search Tree (BST) is a binary tree where:

1. Each node has a key, a left child, and a right child.

2. The left subtree contains keys less than the node’s key.

3. The right subtree contains keys greater than the node’s key.

3

a)Write the C- function to traverse a graph using Depth First Search (DFS). Apply DFS for the

graph given below, starting with f.

Solution:

void dfs(int start)
{
 int visited[MAX]={0};
 int stack[MAX];
 int top=-1,i;
 printf("%d->",start);
 visited[start]=1;
 stack[++top]=start;
 for(i=0;i<MAX;i++)
 printf("%d",visited[i]);
 while(top!=-1)
 {
 start=stack[top];
 for(i=0;i<MAX;i++)
 {
 if(adj[start][i] && visited[i]==0)
 {
 stack[++top]=i;
 for(j=top;j>=0;j--)
 printf("\nStack:%d",stack[j]);
 printf("\nDFS:%d->",i);
 visited[i]=1;
 break;
 }
 }

 if(i==MAX)
 top--;
 }
}

DFS traversal : f b d a c g e

b)Construct a binary tree from the Post-order and In-order sequence given below

In-order: GDHBAEICF Post-order: GHDBIEFCA

Solution:

4 a)Define the leftist tree. Give its declaration in C. Check whether the given binary tree is a

leftist tree or not. Explain your answer.

Solution:

A leftist tree (or leftist heap) is a special type of binary tree used for efficient priority queue

operations, particularly merging two heaps. It maintains the min-heap property (the key at

any node is smaller than or equal to the keys of its children) and an additional structural

property to ensure balance.

b) Define Forest. Transform the given forest into a Binary tree

Solution:

A forest in data structures is a collection of disjoint trees, meaning there are multiple trees,

and no tree shares any nodes with another. In simpler terms, it’s a group of non-connected tree

structures.

Key Characteristics of a Forest

1. A forest can contain one or more trees.

2. The trees in a forest are independent of each other.

3. The concept is used in hierarchical representations where multiple root nodes exist.

5

 a) What is dynamic hashing? Explain the following techniques with examples:.

Dynamic hashing using directories

Directory less dynamic hashing

Solution: Dynamic hashing is a hashing technique that allows the hash table to grow and shrink

dynamically as the data changes. It efficiently handles scenarios where the data set size is

unpredictable, preventing excessive memory usage or frequent rehashing.

Dynamic Hashing Using Directories

In this technique, a directory (array of pointers) is used to manage access to the buckets. The

directory size can grow or shrink as necessary. A hash function determines the index in the

directory, and the directory points to corresponding buckets. The technique is commonly

implemented using extendible hashing.

Process

1. Hash Function: A bit-string hash function is used (e.g., taking the first d bits).

2. Directory: Points to buckets, where the buckets store records.

3. Splitting Buckets: When a bucket overflows, only that bucket splits, and the directory

adjusts accordingly.

4. Doubling Directory: If all buckets at a given level are full, the directory size doubles

to accommodate new data.

Advantages

● Efficient memory use.

● Handles overflows with minimal rehashing

Directory-Less Dynamic Hashing

This technique eliminates the directory and directly manages data in buckets using techniques

like linear hashing.

Process

1. Buckets: Organized sequentially.

2. Hash Function: A series of hash functions, h0,h1,h2,…, is applied as the table grows.

3. Bucket Splitting: When a bucket overflows, the next bucket in the sequence splits,

redistributing records based on the next-level hash function.

4. Pointerless: No directory; pointers are internal to buckets.

Advantages

● No additional memory overhead for directories.

● Simpler structure compared to directory-based methods.

b) Construct the hash table to insert the keys: 7, 24, 18, 52, 36, 54, 11, 23 in a chained

hash table of 9 memory locations. Use h(k) = k mod m.

Solution:

h(7)=7mod9=7

h(24)=24mod  9=6

h(18)=18mod  9=0

h(52)=52mod  9=7

h(36)=36mod  9=0

h(54)=54mod  9=0

h(11)=11mod  9=2

h(23)=23mod  9=5

6

a) Define min Leftist tree. Meld the given min leftist trees

Solution: A Min Leftist Tree is a type of binary tree designed for efficient priority queue

operations, adhering to two key properties: the Min-Heap Property and the Leftist Property.

The Min-Heap Property ensures that the key value at any node is smaller than or equal to the

keys of its children, maintaining a hierarchical ordering. The Leftist Property requires that the

Null Path Length (NPL) of the left child is always greater than or equal

to the NPL of the right child, promoting a structure with a shorter

right spine for efficient merging. The NPL of a node is defined as the

length of the shortest path from the node to a null child, with a null

node having an NPL of −1-1−1. These properties collectively ensure

that Min Leftist Trees are balanced and optimized for operations

like melding, insertion, and deletion.

b) Explain the optimal binary search tree with a suitable example.

Solution: An Optimal Binary Search Tree (OBST), also known as a Weighted
Binary Search Tree, is a binary search tree that minimizes the expected
search cost. In a binary search tree, the search cost is the number of
comparisons required to search for a given key. In an OBST, each node is
assigned a weight that represents the probability of the key being searched
for. The sum of all the weights in the tree is 1.0. The expected search cost
of a node is the sum of the product of its depth and weight, and the
expected search cost of its children.

