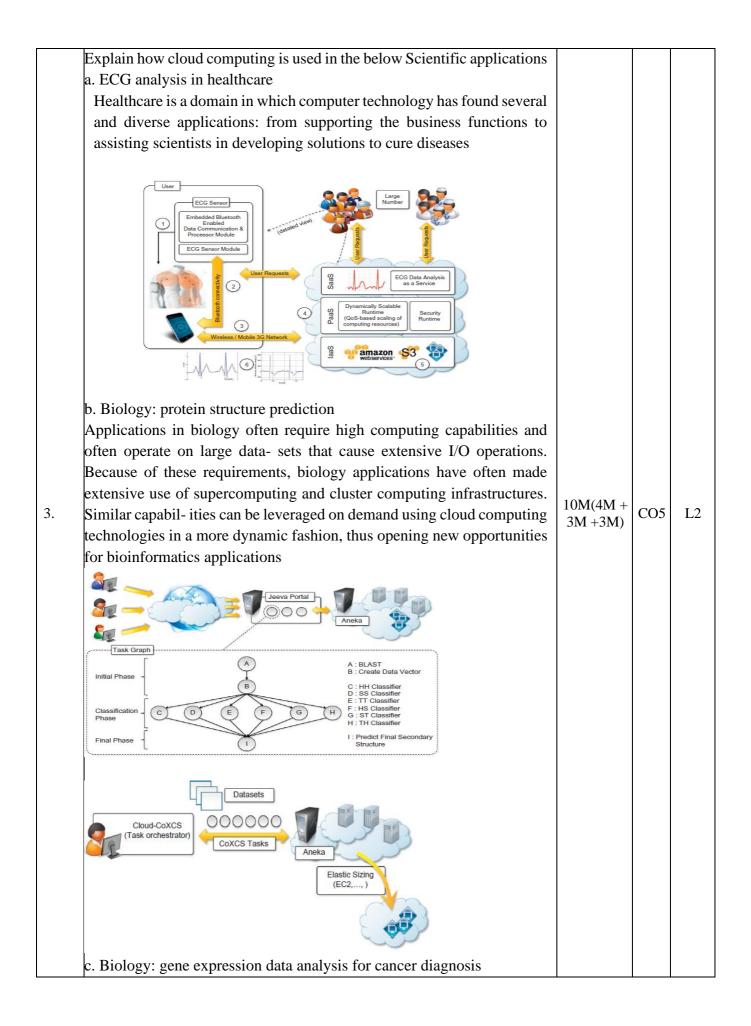
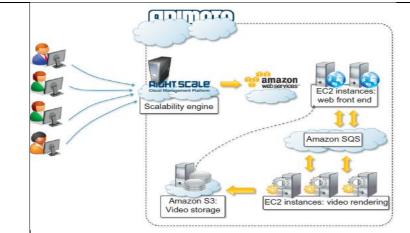
USN					

	Internal Assessment Test 3 – Dece	ember 2024				
Sub:	CLOUD COMPUTING	Sub Code:	21CS7	2 Branch:	15	SE
Date:	16/12/2024 Duration: 90 min's Max Marks: 50	Sem/Sec:	VII /	' A, B, C	OI	BE
	Answer any FIVE FULL Questions			MARKS	СО	RBT
1.	Discuss the role of Amazon Machine Images (AMI compute ecosystem, explain how EC2 instances ar managed within an EC2 environment, and analyze advanced compute services offered by Amazon Web Se	e launched the featur	d and	10M	CO5	L2
2.	Discuss the key concepts of Amazon S3, describe the Amazon Elastic Block Store (EBS) and Amazon E evaluate how structured storage solutions and Ama contribute to efficient data management and content del	ElastiCache zon Cloud ivery in AV	, and lFront WS.	10M	CO5	L2
3.	Explain how cloud computing is used in the below Sciena. ECG analysis in healthcareb. Biology: protein structure predictionc. Biology: gene expression data analysis for cancer diad. Geoscience: satellite image processing	gnosis		10M	CO5	L2
4.	Identify the role of cloud-based media applications in and processing. Compare Animoto, Maya rendering v Video encoding on the cloud via Encoding.com in functionality, performance, and use cases for media pro	with Aneka terms of	a, and	10M	CO5	L3
5. a	Discuss the application lifecycle with a focus on applicat and testing, deployment strategies, and management pra	-	pment	5M	CO5	L2
5. b	Explain the architecture and key components of mugaming systems.	ultiplayer (online	5M	CO5	L2
6. a	Explain various computing platforms and technolo Amazon Web Services (AWS), Google App Engine, M Hadoop, Force.com, Salesforce.com, and Manjrasoft these platforms cater to different computational needs, a key use cases in modern cloud computing environments	Microsoft A Aneka. Ho nd what are	Azure, ow do e their	6M	CO1	L2
6. b	Illustrate the bird's-eye view of cloud computing pro examples and Include a detailed diagram showe components and interactions within a cloud computing	casing the	key	4M	CO1	L2

.

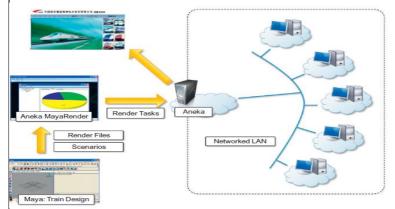


Internal Assessment Test 3 – December 2024


Sub:		CLOUD CO	MPUTI	NG		Sub Code:	21CS7	2 Branch:	I	SE
Date:	16/12/2024	Duration: 90	min's	Max Mark	s: 50	Sem/Sec:	VII /	′ A, B, C	0	BE
			Scheme	2				MARKS	СО	RBT
1.	advanced com Compute service systems. The fur an IaaS solution other vendors in Amazon machin They are stored of ami-xxxxx system layout w Compute Services Amazon Elastic Compute Cloud (EC2) Amazon Elastic MapReduce AWS Elastic Beanstalk AWS Cloudformation Autoscaling	system, explain nin an EC2 e pute services of ces constitute t ndamen- tal served in the same mark in the same mark in the same mark in Amazon S3 and a manifest vith a predefined Storage Services Amazon Simple Storage Services Amazon Simple Storage Services Amazon Simple Storage Service (EBS) Amazon Elastic Bloc Store (EBS) Amazon Elastic Bloc Store (EBS) Amazon Elastic Cache Amazon Simple Database Service (RD Amazon CloudFron Import/Export	n how nvironm offered b he fund ice in th as a refe et segma and iden XML l operati	EC2 instant nent, and a by Amazon amental eler is space is Ar r- ence mode ent. tified by a un file. An AM	nces an unalyze Web Se nent of nazon E l for sev ique id I contai	re launcheo the feature ervices. cloud com C2, which do eral offering entifier in the ins a physic services ovCloud udWatch "lexible vice (FPS) DevPay ulfillment e (FWS) schanical	d and res of puting elivers s from e form	5+ 5 M 10M	CO5	L2

	EC2 instances are executed within a virtual environment, which provides them with the services they require to host applications. The EC2 environment is in charge of allocating addresses, attaching storage volumes, and configuring security in terms of access control and network connectivity. A key pair allows the owner to remotely connect to the instance once this is running and gain root access to it. Amazon EC2 controls the accessibility of a virtual instance with basic firewall configuration, allowing the specification of source address, port, and protocols (TCP, UDP, ICMP). Rules can also be attached to security groups, and instances can be made part of one or more groups before their deployment. Security groups and firewall rules constitute a flexible way of providing basic security configuration within the instance itself. Advanced compute services AWS CloudFormation AWS elastic beanstalk Amazon elastic MapReduce			
2.	Discuss the key concepts of Amazon S3, describe the functionality of Amazon Elastic Block Store (EBS) and Amazon ElastiCache, and evaluate how structured storage solutions and Amazon CloudFront contribute to efficient data management and content delivery in AWS. AWS provides a collection of services for data storage and information management. The core service in this area is represented by Amazon Simple Storage Service(S3). The core components of S3 are two buckets and objects. Buckets represent virtual containers in which to store objects; objects represent the content that is stored. Objects can also be enriched with metadata that can be used to tag the stored content with additional information. S3 key concepts The storage is organized in a two-level hierarchy. Stored objects cannot be manipulated like standard files. Content is not immediately available to users Requests will occasionally fail Resource naming Canonical form: http://s3.amazonaws.com/bukect_name/. Subdomain form: http://bucketname.s3.amazon.com/. Virtual hosting form: http://bucket-name.com/. Since a bucket can be expressed in three different ways, objects indirectly inherit this flexibility: Canonical form: http://s3.amazonaws.com/bukect_name/object_name Subdomain form: http://bucket-name/s3.amzonaws.com/object_name Virtual hosting form: http://bucket-name/s3.amzonaws.com/object_name Subdomain form: http://bucket-name/s3.amzonaws.com/object_name Virtual hosting form: http://bucket-name/s3.amzonaws.com/object_name Subdomain form: http://s3.amazonaws.com/bukect_name/object_name Virtual hosting form: http://s3.amazonaws.com/bukect_name/object_name Virtual hosting form: http://s3.amazonaws.com/bukect_name/object_name Subdomain form: http://s3.amazonaws.com/bukect_name/object_name Virtual hosting form: http://s3.amazonaws.com/bukect_name/object_name Virtual hosting form: http://s3.amazonaws.com/bukect_name?object_name?acl Bucket server logging: http://s3.amzonaws.com/bukect_name?logging Buckets	10M (5M+5M)	CO5	L2

hosted on the S3 distri store to which they can	of objects. It can be thought of ibuted storage, which provides add objects. Buckets are top-leve and do not support nesting.	users with a flat	
Objects constitute the of files or push to the S3		ect's content. An	
EC2 instances with per mounted at instance sta are accessed through a format them according (raw storage, file syst	tore : lock Store (EBS) allows AWS sistent storage in the form of vol rtup. They accommodate up to 1 a block device interface, thus a to the needs of the instance they em, or other). The content of fe cycle and is persisted into S3.	lumes that can be TB of space and allowing users to are connected to an EBS volume	
on a cluster of EC2 inst instances through a M	ementation of an elastic in-men ances. It provides fast data acces lemcached-compatible protocol such technology do not need to ate to ElastiCache.	s from other EC2 so that existing	
Structured storage solu Amazon Relational Dat	tions taStorage (RDS), and Amazon S	Simple DB	
replicas. The high-ava standby synchronized zones that are activated	tures of RDS are multi-AZ depl ilability solution is implemente copies of the services in differ d if the primary service goes do with increased performance for tabase reads.	ed by keeping in rent avail- ability own. The second	
-	a lightweight, highly scalable, pplications that do not require		
the Amazon distributed edge servers strategic	mentation of a content delivery r storage infrastructure. It leverag ally located around the globe streaming Web content so that the ssible.	ges a collection of to better serve	



	 Gene expression profiling is the measurement of the expression levels of thousands of genes at once. It is used to understand the biological processes that are triggered by medical treatment at a cellular level. Together with protein structure prediction, this activity is a fundamental component of drug design, since it allows scientists to identify the effects of a specific treatment. Another important application of gene expression profiling is cancer diagnosis and treatment. Cancer is a disease characterized by uncontrolled cell growth and proliferation. This behavior occurs because genes regulating the cell growth mutate. This means that all the cancerous cells contain mutated genes. d. Geoscience: satellite image processing Geoscience applications collect, produce, and analyze massive amounts of geospatial and nonspatial data. As the technology progresses and our planet becomes more instrumented (i.e., through the deployment of sensors and satellites for monitoring), the volume of data that needs to be processed increases significantly. In particular, the geographic information system (GIS) is a major element of geoscience applications. 			
4.	Identify the role of cloud-based media applications in content creation and processing. Compare Animoto, Maya rendering with Aneka, and Video encoding on the cloud via Encoding.com in terms of their functionality, performance, and use cases for media professionals. Media applications are a niche that has taken a considerable advantage from leveraging cloud computing technologies. In particular, video- processing operations, such as encoding, transcoding, com- position, and rendering, are good candidates for a cloud-based environment. These are computationally intensive tasks that can be easily offloaded to cloud computing infrastructures. Animoto : Animoto is perhaps the most popular example of media applications on the cloud. The Website provides users with a very straightforward interface for quickly creating videos out of images, music, and video fragments submitted by users. Users select a specific theme for a video, upload the photos and videos and order them in the sequence they want to appear, select the song for the music, and render the video. The process is executed in the background and the user is notified via email once the video is rendered.	10M(5M+5 M)	CO5	L3

Maya rendering with Aneka

Interesting applications of media processing are found in the engineering disciplines and the movie production industry. Operations such as rendering of models are now an integral part of the design workflow, which has become computationally demanding. The visualization of mechanical models is not only used at the end of the design process, it is iteratively used to improve the design. It is then fundamental to perform such tasks as fast as possible. Cloud computing provides engineers with the necessary computing power to make this happen.

Video encoding on the cloud: Encoding.com

Video encoding and transcoding are operations that can greatly benefit from using cloud technologies: They are computationally intensive and potentially require considerable amounts of storage. Moreover, with the continuous improvement of mobile devices as well as the diffusion of the Internet, requests for video content have significantly increased. The variety of devices with video playback capabilities has led to an explosion of formats through which a video can be delivered. Software and hardware for video encoding and transcoding often have prohibitive costs or are not flexible enough to support conversion from any format to any format. Cloud technologies present an opportunity for turning these tedious and often demanding tasks into services that can be easily integrated into a variety of workflows or made available to everyone according to their needs.

5. a	Discuss the application lifecycle with a focus on application development and testing, deployment strategies, and management practices. Application development and testing Java SDK Python SDK Application deployment and management	5M	CO5	L2
5. b	Explain the architecture and key components of multiplayer online gaming systems. Online multiplayer gaming attracts millions of gamers around the world who share a common experience by playing together in a virtual environment that extends beyond the boundaries of a normal LAN. Online games support hundreds of players in the same session, made possible by the specific architecture used to forward interactions, which is based on game log processing. Players update the game server hosting the game session, and the server integrates all the updates into a log that is made available to all the players through a TCP port. The client software used for the game connects to the log port and, by reading the log, updates the local user interface with the actions of other players. Game log processing is also utilized to build statistics on players and rank them. These features constitute the additional value of online gaming portals that attract more and more gamers. The processing of game logs is a potentially compute-intensive operation that strongly depends on the number of players online and the number of games monitored. Moreover, gaming portals are Web applications and therefore might suffer from the spiky behaviour of users that can randomly generate large amounts of volatile workloads that do not justify capacity planning.	5M	CO5	L2

6. a	Explain various computing platforms and technologies, including Amazon Web Services (AWS), Google App Engine, Microsoft Azure, Hadoop, Force.com, Salesforce.com, and Manjrasoft Aneka. How do these platforms cater to different computational needs, and what are their key use cases in modern cloud computing environments? Development of a cloud computing application happens by leveraging platforms and frameworks that provide different types of services, from the bare-metal infrastructure to customizable applications serving specific purposes. Amazon web services (AWS) AWS offers comprehensive cloud IaaS services ranging from virtual compute, storage, and networking to complete computing stacks. AWS is mostly known for its compute and storage-on- demand services, namely Elastic Compute Cloud(EC2) and Simple Storage Service(S3). Google AppEngine Google AppEngine Google AppEngine is a scalable runtime environment mostly devoted to executing Web applications. These take advantage of the large computing infrastructure of Google to dynamically scale as the demand varies over time. AppEngine provides both a secure execution environment and a col-lection of services that simplify the development of scalable and high-performance Web applications. Microsoft Azure Microsoft Azure is a cloud operating system and a platform for developing applications in the cloud. It provides a scalable runtime environment for Web applications and distributed applications in general. Applications in Azure are organized around the concept of roles, which identify a distribution unit for applications and embody the application's logic. Currently, there are three types of role: Web role, worker role, and virtual machine role. Hadoop Apache Hadoop is an open-source framework that is suited for processing large data sets on commodity hardware. Hadoop is an implementation of MapReduce, an application programming model developed by Google, which provides two fundamental operations for data processing map and reduce. Force.com and Salesforce.com Evenc	6М	CO1	L2	
------	---	----	-----	----	--

	blocks; a complete set of components supporting all the activities of an enterprise are available.			
	Manjrasoft Aneka			
	Manjrasoft Aneka [165] is a cloud application platform for rapid creation			
	of scalable applications and their deployment on various types of clouds			
	in a seamless and elastic manner. It supports a col- lection of			
	programming abstractions for developing applications and a distributed			
	runtime environ- ment that can be deployed on heterogeneous hardware			
	(clusters, networked desktop computers, and cloud resources).			
	Developers can choose different abstractions to design their application:			
	tasks, distributed threads, and map-reduce.			
	Illustrate the bird's-eye view of cloud computing providing practical			
	examples and Include a detailed diagram showcasing the key			
	components and interactions within a cloud computing environment.			
	Cloud computing is helping enterprises, governments, public and private			
	institutions, and research organizations shape more effective and			
	demand-driven computing systems			
	Large enterprises can offload some of their activities to cloud-based			
	systems.			
	Small enterprises and start-ups can afford to translate their ideas into			
	business results more quickly, without excessive up-front costs.			
	System developers can concentrate on the business logic rather than			
	dealing with the complexity of infrastructure management and			
	scalability.			
	End users can have their documents accessible from everywhere and any			
6. b	device.	4M	CO1	L2
	The three major models for deploying and accessing cloud computing			
	environments are public clouds, private/enterprise clouds, and hybrid			
	clouds			
	Subscription - Oriented Cloud Services:			
	X{compute, apps, data,} Manjrasoft as a Service (aaS)			
	Cloud & Compute			
	Clients Private Private			
	Cloud			
	Cloud Services Cloud Services			