
1. Graph databases, like Neo4j, are designed to handle complex relationships between data. As data
grows, it's crucial to scale these databases efficiently. Here are three common methods:

1. Vertical Scaling (Sharding):



● Concept: Partitioning the graph into smaller subgraphs based on node properties or
relationships.

● Diagram:

Graph Database Sharding Diagram

● Implementation: Neo4j offers built-in sharding capabilities. You define rules to distribute
nodes and relationships across different partitions.

2. Horizontal Scaling (Replication):

● Concept: Creating multiple copies of the entire graph database on different servers.
● Diagram:

Graph Database Replication Diagram

● Implementation: Neo4j supports replication through read replicas. This allows read
operations to be distributed across multiple servers, improving performance.

3. Hybrid Approach:

● Concept: Combining sharding and replication for optimal scalability.
● Diagram:

https://dgraph.io/blog/post/db-sharding/
https://docs.nebula-graph.io/3.1.3/synchronization-and-migration/replication-between-clusters/


Graph Database Hybrid Scaling Diagram

● Implementation: You can shard the graph and then replicate each shard for high availability
and read scalability.

2. Adding Indexes:

Create an Index: Use the CREATE INDEX statement, specifying the label and property to index.

Cypher
CREATE INDEX ON :Person(name)

1.

Create a Unique Constraint: Ensure uniqueness for a property using CREATE CONSTRAINT.

Cypher
CREATE CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE

2.

Adding Relationships:

Create a Relationship: Use the MATCH clause to find nodes, then create a relationship between them
using the CREATE clause.

Cypher
MATCH (person1:Person {name: 'Alice'}), (person2:Person {name: 'Bob'})

CREATE (person1)-[:KNOWS]->(person2)

1.

Add Properties to Relationships: Assign properties to the relationship during creation.

Cypher
MATCH (person1:Person {name: 'Alice'}), (person2:Person {name: 'Bob'})

CREATE (person1)-[:KNOWS {since: 2022}]->(person2)

2.

Add Incoming and Outgoing Relationships: Use the <-[]- syntax for incoming relationships and
-[]-> for outgoing relationships.

https://medium.com/@gouri.benni/an-overview-on-a-hybrid-database-approach-using-graph-and-relational-database-fb216e0a24f1


Cypher
MATCH (person:Person {name: 'Alice'})

RETURN (person)<-[:KNOWS]-() // Incoming relationships

RETURN (person)-[:KNOWS]->() // Outgoing relationships

3.

3. Cypher Queries

(i) Finding Paths and Distances:

Cypher

MATCH p=(b:Person {name: 'Barbara'})-[*]-(j:Person {name: 'Jill'})

RETURN p, length(p) AS distance

(ii) Finding Friends of "Ajay":

Cypher

MATCH (a:Person {name: 'Ajay'})-[:FRIEND]->(f)

RETURN f.name

(iii) Finding Relationships with a Property:

Cypher

MATCH ()-[r]-()

WHERE EXISTS(r.property_name)

RETURN r

4: Consistency and Availability in MongoDB

Consistency:

● Concept: All nodes in a replica set have the same data.
● Diagram:



MongoDB Consistency Diagram

● Implementation: MongoDB uses the write concern option to enforce consistency.

Availability:

● Concept: The database is always accessible, even if some nodes fail.
● Diagram:

MongoDB Availability Diagram

● Implementation: MongoDB uses replica sets to achieve high availability.

5: Horizontal Sharding in MongoDB

(i) Adding a New Node to an Existing Replica Set:

1. Add the new node: Use the rs.add() command.
2. Initialize the new node: Run rs.initiate() on the primary node.

(ii) Setup where each shard is a replica set:

1. Create replica sets: Create multiple replica sets, each containing multiple nodes.
2. Configure sharding: Use the sh.addShard() command to add each replica set as a shard.

6: Document Databases vs. SQL and Key-Value Databases

● Document Databases: Store data in flexible, JSON-like documents.
● SQL Databases: Store data in tables with fixed schemas.
● Key-Value Databases: Store data as key-value pairs.

Differences:

https://stackoverflow.com/questions/33589380/how-does-mongos-eventual-consistency-work-with-a-large-number-of-data-writes
https://www.hostingraja.in/database/mongo-db-clustering/


● Schema: Document databases are schema-less or have flexible schemas, while SQL
databases have rigid schemas.

● Data Model: Document databases are better suited for complex, hierarchical data, while
key-value databases are good for simple data.

● Querying: Document databases support flexible queries based on document content, while
key-value databases are limited to key-based lookups.


