us S AN
N =N
Internal Assessment Test 3 — December 2024
Sub: | NOSQL database Sub Code: | 21CS745 | Branch: | CSE
Date: /12/24] Duration:] 90 mins | Max Marks: |50 Sem/Sec:7/ A/B/C OBl
Answer any FIVE FULL Questions MARKS CO |RBT
1 Provide a clear explanation, accompanied by a well-structured diagram, illustrating [10] CcO3 | L2
three methods of scaling a graph database.
2 Explain the process of adding indexes for nodes in a Neo4j database, and provide a [10] CO3 | L2
detailed explanation of how to add incoming and outgoing relationships.
3 Write Cypher queries for [10] CcOo3 | L3

1) Consider Barbara is connected to Jill by two distinct paths; How to find all these
paths and the distance between Barbara and Jill along those different paths? (4 marks)
i1) Find all outgoing relationships with the type of FRIEND, and return the

friends’ names of “Ajay” for greater depth (3 marks)

111) Find relationships where a particular relationship property exists. Filter on the
properties of relationships and query if a property exists or not.(3 marks)

4 Clarity the principles of consistency and availability in MongoDB, with the help of clear [10] | CO4 | L2
diagrams.
Consistency (5 marks)
Availability (5 marks)
5 Explain the concept of horizontal sharding in MongoDB, [10] | CO4 | L3
1) Covering the procedure for adding a new node to an existing replica set
(4+1 diagram),
ii) Detailing the setup where each shard is a replica set- 4+1 diagram
6 Provide a brief overview of document databases and highlight their differences from SQL | [10] | CO4 | L2
and key-value databases.
C1 CCI HOD

1. Graph databases, like Neo4j, are designed to handle complex relationships between data. As data
grows, it's crucial to scale these databases efficiently. Here are three common methods:

1. Vertical Scaling (Sharding):

e Concept: Partitioning the graph into smaller subgraphs based on node properties or
relationships.

e Diagram:

Tires

developers in 5F
For mach developesr,
wtetter theey use Wim

rvssslnness i TF abun it wiee

Graph Database Sharding Diagram

e Implementation: Neodj offers built-in sharding capabilities. You define rules to distribute
nodes and relationships across different partitions.

2. Horizontal Scaling (Replication):

e Concept: Creating multiple copies of the entire graph database on different servers.
e Diagram:

e

Lo . .
il g i R —

Cluster & Secondary chuw

Graph Database Replication Diagram

o Implementation: Neodj supports replication through read replicas. This allows read
operations to be distributed across multiple servers, improving performance.

3. Hybrid Approach:

e Concept: Combining sharding and replication for optimal scalability.
e Diagram:

https://dgraph.io/blog/post/db-sharding/
https://docs.nebula-graph.io/3.1.3/synchronization-and-migration/replication-between-clusters/

Folcer Iy — s
y Flrws ™,

Graph Database Hybrid Scaling Diagram

e Implementation: You can shard the graph and then replicate each shard for high availability
and read scalability.

2. Adding Indexes:

Create an Index: Use the CREATE INDEX statement, specifying the label and property to index.

Cypher
CREATE INDEX ON :Person(name)

1.

Create a Unique Constraint: Ensure uniqueness for a property using CREATE CONSTRAINT.

Cypher
CREATE CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE

2.

Adding Relationships:

Create a Relationship: Use the MATCH clause to find nodes, then create a relationship between them
using the CREATE clause.

Cypher
MATCH (person1:Person {name: 'Alice'}), (person2:Person {name: 'Bob'})

CREATE (person1)-[:KNOWS]->(person2)

1.

Add Properties to Relationships: Assign properties to the relationship during creation.

Cypher
MATCH (person1:Person {name: 'Alice'}), (person2:Person {name: '‘Bob'})

CREATE (person1)-[:KNOWS {since: 2022}]->(person2)

2.

Add Incoming and Outgoing Relationships: Use the <-[] - syntax for incoming relationships and
-[] -> for outgoing relationships.

https://medium.com/@gouri.benni/an-overview-on-a-hybrid-database-approach-using-graph-and-relational-database-fb216e0a24f1

Cypher
MATCH (person:Person {name: 'Alice'})

RETURN (person)<-[:KNOWS]-() // Incoming relationships
RETURN (person)-[:KNOWS]->() // Outgoing relationships
3.
3. Cypher Queries
(i) Finding Paths and Distances:
Cypher
MATCH p=(b:Person {name: 'Barbara'})-[*]-(j:Person {name: 'Jill'})

RETURN p, length(p) AS distance

(ii) Finding Friends of "Ajay":
Cypher
MATCH (a:Person {name: 'Ajay'})-[:FRIEND]->(f)

RETURN f.name

(iii) Finding Relationships with a Property:
Cypher

MATCH ()-[r]-()

WHERE EXISTS(r.property_name)

RETURN r

4: Consistency and Availability in MongoDB
Consistency:

e Concept: All nodes in a replica set have the same data.
e Diagram:

MoTly Fublnk

[==rEaS— [T

MongoDB Consistency Diagram
e Implementation: MongoDB uses the write concern option to enforce consistency.
Availability:

e Concept: The database is always accessible, even if some nodes fail.
e Diagram:

¢ ‘

Wiongoli B Cuery rouder

) ¢ e
MongoDB Availability Diagram

¢ Implementation: MongoDB uses replica sets to achieve high availability.
5: Horizontal Sharding in MongoDB

(i) Adding a New Node to an Existing Replica Set:

1. Add the new node: Use the rs.add() command.
2. |Initialize the new node: Run rs.initiate() on the primary node.

(ii) Setup where each shard is a replica set:

1. Create replica sets: Create multiple replica sets, each containing multiple nodes.
2. Configure sharding: Use the sh.addShard() command to add each replica set as a shard.

6: Document Databases vs. SQL and Key-Value Databases

e Document Databases: Store data in flexible, JSON-like documents.
SQL Databases: Store data in tables with fixed schemas.
e Key-Value Databases: Store data as key-value pairs.

Differences:

https://stackoverflow.com/questions/33589380/how-does-mongos-eventual-consistency-work-with-a-large-number-of-data-writes
https://www.hostingraja.in/database/mongo-db-clustering/

Schema: Document databases are schema-less or have flexible schemas, while SQL
databases have rigid schemas.

Data Model: Document databases are better suited for complex, hierarchical data, while
key-value databases are good for simple data.

Querying: Document databases support flexible queries based on document content, while
key-value databases are limited to key-based lookups.

