

1 a Distinguish between full virtualization and para virtualization? [10] = [5+5]

Full virtualization and para-virtualization are two types of virtualization techniques used to create

virtual machines (VMs) on a host system. Here's how they differ:

1. Full Virtualization:

 Definition: In full virtualization, the virtual machine (VM) completely simulates the

underlying hardware, allowing the operating system and applications to run without

modification.

 Hypervisor Role: The hypervisor (also known as a Virtual Machine Monitor or VMM)

manages the physical resources and provides each VM with a complete simulation of the

hardware.

 OS Compatibility: Since full virtualization mimics hardware exactly, any operating system

(OS) that can run on physical hardware can also run on a VM without modification.

 Performance: Full virtualization can introduce more overhead because the hypervisor has to

fully emulate the hardware, leading to performance loss compared to para-virtualization.

 Examples: VMware, Microsoft Hyper-V, and VirtualBox (when using hardware emulation

mode).

USN

Internal Assessment Test 1 – October 2024

Sub: Cloud Computing Sub Code: 21CS72 Branch: AIML

Date: /10/24 Duration:
90

minutes
Max Marks: 50 Sem/Sec: VII OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a Distinguish between full virtualization and para virtualization? [10] 2 L2

2 a With a neat diagram, explain the taxonomy of virtualization techniques? [10] 1 L2

3 a

Analyze the cloud services offered by AWS, Google App Engine, Microsoft Azure,

and Hadoop. How do their features, scalability, and pricing structures compare, and

what factors should an organization consider when choosing between them?

[10] 1 L3

4 a Describe the characteristics of virtualization environments with the required diagrams? [10] 2 L2

5 a Explain the major distributed technologies that led to cloud computing? [05] 2 L2

 b Briefly describe the challenges ahead in cloud computing? [05] 2 L2

6 a

Analyze the architecture of Salesforce and Force.com. How do their components

interact, and what implications do these architectural choices have for application

development and scalability in enterprise environments?

[10] 2 L3

 Hardware Support: Newer processors (e.g., Intel VT-x, AMD-V) include virtualization

extensions to improve performance by reducing overhead.

2. Para-Virtualization:

 Definition: Para-virtualization allows the guest operating system to be aware that it is running

on a virtualized platform, enabling optimizations in the interaction between the OS and the

hypervisor.

 Hypervisor Role: The hypervisor presents an abstraction of the hardware that allows the

guest OS to interact more efficiently by avoiding full emulation of the hardware.

 OS Compatibility: In para-virtualization, the guest OS must be modified to work with the

virtualized environment, since it knows that it’s not running directly on the hardware.

 Performance: Para-virtualization generally offers better performance compared to full

virtualization because it reduces the overhead of emulating hardware. The guest OS can make

more efficient system calls to the hypervisor.

 Examples: Xen hypervisor with para-virtualization mode.

 Hardware Support: Para-virtualization does not necessarily require hardware-level

virtualization support but may benefit from it.

Key Differences:

Feature Full Virtualization Para-Virtualization

Hardware

Emulation

Complete hardware emulation

provided by the hypervisor

No full hardware emulation; guest OS

interacts directly with the hypervisor

Guest OS
No modification required for the

guest OS

Guest OS needs modification to work in a

para-virtualized environment

Performance
Higher overhead, slower

performance

Lower overhead, better performance due to

reduced emulation

OS

Compatibility

Supports any OS compatible with

the hardware

Requires OS modifications, limiting

compatibility

Hardware

Support

Hardware support improves

performance but is not mandatory

Can work without hardware support, but

modern processors enhance performance

Use Case
Useful for running unmodified

OSes or for broad compatibility

Ideal for performance-critical applications

where OS modification is acceptable

The taxonomy of virtualization techniques can be categorized into various levels based on the aspect

of the system being virtualized, such as hardware, operating system, or application level. These

techniques provide varying levels of abstraction, and each has its own use cases and performance

implications. Below is an explanation and a diagram to illustrate this taxonomy.

1. Hardware Virtualization

 Type: Virtualizes the physical hardware.

 Examples: Full virtualization, Para-virtualization, and Hardware-assisted virtualization.

 Explanation: Multiple virtual machines (VMs) run on a single physical host by using

hypervisors to allocate resources like CPU, memory, and network to each VM.

2. Operating System Virtualization

 Type: Virtualizes the operating system kernel to allow multiple instances of the OS on a

single host.

 Examples: Containers (Docker, LXC).

 Explanation: Instead of emulating hardware, this technique isolates multiple user spaces and

applications by sharing the same OS kernel.

3. Application Virtualization

 Type: Virtualizes individual applications.

 Examples: VMware ThinApp, Microsoft App-V.

 Explanation: Application virtualization abstracts the application from the underlying OS,

allowing it to run in a self-contained environment without installing it on the host OS.

4. Storage Virtualization

 Type: Virtualizes physical storage devices.

 Examples: SAN (Storage Area Networks), NAS (Network Attached Storage).

 Explanation: Combines multiple physical storage resources into a single storage pool,

improving management and scalability.

5. Network Virtualization

 Type: Virtualizes network resources.

 Examples: VLAN, VPN, SDN (Software-Defined Networking).

 Explanation: Combines and isolates network resources to create multiple virtual networks

over a physical network infrastructure.

2 a
With a neat diagram, explain the taxonomy of virtualization techniques?[diagram = 5+

virtualization 5]

Diagram:

The diagram below illustrates the different layers of virtualization techniques:

 +----------------------------------+

 | Application Virtualization |

 +----------------------------------+

 | Operating System Virtual. |

 +----------------------------------+

 | Hardware Virtualization |

 +----------------------------------+

 | Storage Virtualization |

 +----------------------------------+

 | Network Virtualization |

 +----------------------------------+

Each of these layers represents a different level of system abstraction, with hardware virtualization

being the most fundamental and application virtualization being the most specific.

3.Compare the cloud services provided by AWS, Google App Engine, Microsoft Azure &

Hadoop? [2+2+3+3]

The cloud services provided by Amazon Web Services (AWS), Google App Engine, Microsoft

Azure, and Hadoop serve different purposes and have unique offerings, although they all fall under

the broader category of cloud computing platforms. Here's a comparative analysis based on key

factors:

1. Cloud Service Types

Platform Service Type Primary Focus

AWS IaaS, PaaS, SaaS
Extensive range of services (compute, storage,

networking, databases)

Google App

Engine
PaaS (Platform as a Service) Serverless application development and hosting

Microsoft

Azure
IaaS, PaaS, SaaS Wide range of enterprise cloud services

Hadoop
Framework/Platform (for

distributed computing)

Big data storage and processing using HDFS

(Hadoop Distributed File System)

 AWS and Azure provide Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS) with a large selection of offerings from networking to AI/ML.

 Google App Engine is primarily a PaaS offering, focused on simplifying serverless app

development.

 Hadoop is not a general cloud provider but is specifically designed for big data storage and

processing in distributed computing environments.

2. Compute Services

Platform Compute Services

AWS
EC2 (Elastic Compute Cloud), Lambda (serverless), ECS (Elastic Container

Service), EKS (Elastic Kubernetes Service)

Google App

Engine
Compute Engine, Kubernetes Engine, Cloud Functions (serverless)

Microsoft

Azure
Virtual Machines, Azure Functions (serverless), Azure Kubernetes Service (AKS)

Hadoop
YARN (Yet Another Resource Negotiator), HDFS for distributed processing using

MapReduce

 AWS offers the most extensive options with EC2 for virtual machines, Lambda for serverless,

and ECS/EKS for containerized applications.

 Google App Engine focuses on ease of use for developers with Cloud Functions for

serverless applications and Kubernetes Engine for containerized applications.

 Azure has comparable compute services, with its Virtual Machines and Azure Functions for

serverless computing.

 Hadoop provides YARN for managing computing resources, but its main focus is on

processing large data sets using MapReduce.

3. Storage Services

Platform Storage Services

AWS S3 (Simple Storage Service), EBS (Elastic Block Store), Glacier (cold storage)

Google App Engine Cloud Storage, Persistent Disks, Cloud SQL (database)

Microsoft Azure Blob Storage, File Storage, Disk Storage, Cosmos DB

Hadoop HDFS (Hadoop Distributed File System)

 AWS S3 is widely regarded as the most mature and scalable cloud storage service, with

additional options like EBS for block storage and Glacier for long-term archival storage.

 Google App Engine offers Cloud Storage, which is similar to S3, along with persistent disks

for virtual machines and databases.

 Azure has Blob Storage for unstructured data, as well as options for structured and semi-

structured data storage (Cosmos DB).

 Hadoop relies on HDFS, which is specifically designed for distributed storage across clusters

of machines and excels in handling large datasets.

4. Networking Services

Platform Networking Services

AWS
VPC (Virtual Private Cloud), CloudFront (CDN), Route 53 (DNS), Direct

Connect

Google App

Engine
Virtual Private Cloud (VPC), Cloud CDN, Cloud DNS, Cloud Interconnect

Microsoft Azure Virtual Network (VNet), Azure CDN, Azure DNS, ExpressRoute

Hadoop Does not offer networking services directly

 AWS, Google, and Azure all provide comprehensive networking services, including Virtual

Private Networks (VPN), Content Delivery Networks (CDN), and DNS services. AWS is

known for its robust networking infrastructure, including Direct Connect for dedicated

connections.

 Hadoop lacks native networking services, as it relies on underlying infrastructure for

communication between nodes in a cluster.

5. Database Services

Platform Database Services

AWS
RDS (Relational Database Service), DynamoDB (NoSQL), Redshift (Data

Warehouse)

Google App

Engine

Cloud SQL (Relational), Cloud Bigtable (NoSQL), Cloud Spanner (scalable

RDBMS)

Microsoft Azure SQL Database, Cosmos DB (NoSQL), Synapse Analytics (Data Warehouse)

Hadoop HBase (NoSQL), Hive (SQL-like querying), Pig (data analytics)

 AWS and Azure offer similar databases for both relational (SQL) and non-relational

(NoSQL) workloads, including analytics services like Redshift (AWS) and Synapse

Analytics (Azure).

 Google App Engine focuses on managed services such as Cloud SQL and Cloud Bigtable.

 Hadoop integrates with HBase for NoSQL storage and Hive for SQL-like queries over large

datasets, though it is not as feature-rich as the database services provided by cloud providers.

6. Machine Learning & Analytics

Platform Machine Learning & Analytics Services

AWS SageMaker, Athena (querying data in S3), EMR (Elastic MapReduce)

Google App Engine AI Platform, BigQuery (data analytics)

Microsoft Azure Azure ML, Synapse Analytics, HDInsight (big data analytics)

Hadoop Pig, Mahout (machine learning library), Hive, Spark

 AWS and Google lead in AI/ML capabilities, with SageMaker (AWS) and AI Platform

(Google) offering comprehensive machine learning development environments.

 Azure has Azure Machine Learning and supports various big data and AI workloads with

HDInsight and Synapse Analytics.

 Hadoop supports machine learning through libraries like Mahout, and data analytics via

Hive, Pig, and Spark.

7. Pricing

Platform Pricing Model

AWS Pay-as-you-go, Reserved Instances, Spot Instances

Google App Engine Pay-as-you-go, free tier available

Microsoft Azure Pay-as-you-go, Reserved Instances, Spot Instances

Hadoop Open-source, costs are related to infrastructure hosting

 AWS, Google App Engine, and Azure all offer pay-as-you-go pricing models with discounts

for reserved or long-term usage. Spot instances are available for running non-critical

workloads at a lower cost.

 Hadoop itself is open-source, meaning there are no direct costs for the software, but users

incur infrastructure costs for hosting it.

Summary Comparison Table:

Feature AWS Google App Engine Microsoft Azure Hadoop

Service

Type
IaaS, PaaS, SaaS PaaS IaaS, PaaS, SaaS Big data platform

Compute EC2, Lambda, ECS
Compute Engine,

Functions

Virtual Machines,

Functions
YARN (MapReduce)

Storage S3, EBS, Glacier
Cloud Storage,

Persistent Disks

Blob Storage,

Cosmos DB
HDFS

Database
RDS, DynamoDB,

Redshift
Cloud SQL, Bigtable

SQL DB, Cosmos

DB
HBase, Hive, Pig

AI/ML SageMaker, EMR
AI Platform,

BigQuery

Azure ML,

HDInsight
Mahout, Spark

Networking VPC, CloudFront VPC, Cloud CDN
Virtual Network,

CDN
-

Pricing Pay-as-you-go Pay-as-you-go Pay-as-you-go
Open-source

(infrastructure)

Conclusion:

 AWS offers the most extensive and mature cloud ecosystem, with services spanning almost

every need.

 Google App Engine excels in serverless application hosting and simplicity for developers.

 Azure is strong in enterprise integration and is favored by businesses running Microsoft

products.

 Hadoop focuses on big data processing and is best for distributed computing tasks but lacks

general cloud services like compute, storage, and networking.

4. Describe the characteristics of virtualization environments with the required diagrams?[5+5]

Virtualization environments are characterized by a set of attributes that allow multiple virtual

machines (VMs) or instances to run simultaneously on a single physical host. Virtualization abstracts

the hardware and system resources, allowing for flexibility, efficiency, and scalability in computing

environments. Let’s explore the key characteristics of virtualization environments with supporting

diagrams.

1. Partitioning

 Definition: Virtualization allows partitioning of physical resources (CPU, memory, storage)

into multiple virtual environments. Each virtual machine (VM) acts as a standalone system.

 Explanation: A single physical server can be divided into several independent VMs, each

running its own operating system and applications.

Diagram: Partitioning

+--+

| Physical Server |

| |

| +-------------------+ +----------------------+ |

| | VM 1 | | VM 2 | |

| | (OS + Apps) | | (OS + Apps) | |

| +-------------------+ +----------------------+ |

| +-------------------+ +----------------------+ |

| | VM 3 | | VM 4 | |

| | (OS + Apps) | | (OS + Apps) | |

| +-------------------+ +----------------------+ |

+--+

 Each VM operates independently and does not affect others, maximizing the use of physical

resources.

2. Isolation

 Definition: Virtualization ensures that VMs are isolated from each other. Any failure or issue

in one VM does not affect the others, and security is enhanced as VMs cannot directly access

each other's resources.

 Explanation: The hypervisor (or Virtual Machine Monitor, VMM) manages VMs and isolates

them by ensuring that each VM’s CPU, memory, and I/O operations do not interfere with

others.

Diagram: Isolation

+--+

| Hypervisor |

| +-------------------+ +-----------------------+ |

| | VM 1 | | VM 2 | |

| | Isolated | | Isolated | |

| +-------------------+ +-----------------------+ |

+--+

 VMs run in isolated environments, with their own resources, protecting them from faults or

attacks occurring in other VMs.

3. Encapsulation

 Definition: Encapsulation refers to the packaging of VMs into files, allowing them to be

easily copied, migrated, or backed up.

 Explanation: Each VM, including its operating system, applications, and state, is

encapsulated into a single file or a set of files. This allows VMs to be moved between

different servers or environments with ease.

Diagram: Encapsulation

+-------------------------+

| Virtual Machine (VM) |

| +---------------------+ |

| | VM Configuration | |

| | Disk Image (File) | |

| | Snapshot (File) | |

| +---------------------+ |

+-------------------------+

 Encapsulation allows portability of VMs and makes disaster recovery more efficient as VMs

can be quickly restored from snapshots or backups.

4. Hardware Independence

 Definition: Virtualization abstracts the hardware, allowing VMs to run on different physical

machines without needing hardware-specific configurations.

 Explanation: VMs can run on any server as long as the underlying hypervisor supports the

hardware. This enables flexibility in moving VMs across data centers or physical hosts

without needing changes in the VM.

Diagram: Hardware Independence

+-------------------------+ +-------------------------+

| Physical Server A | | Physical Server B |

| +---------------------+ | | +---------------------+ |

| | Hypervisor | | | | Hypervisor | |

| | +-----------------+ | | | | +-----------------+ | |

| | | VM 1 (App + OS) | | | | | | VM 1 (App + OS) | | |

| | +-----------------+ | | | | +-----------------+ | |

+-------------------------+ +-------------------------+

 VMs can migrate across different servers or physical hardware without altering the VM

configuration, providing flexibility for load balancing or maintenance.

5. Resource Sharing

 Definition: Virtualization enables efficient resource sharing by allowing multiple VMs to

share the physical resources of a single host (such as CPU, memory, and I/O devices).

 Explanation: The hypervisor schedules the use of hardware resources, ensuring that each VM

gets the required resources without over-allocating or starving any VM.

Diagram: Resource Sharing

+--+

| Physical Host Resources |

| (CPU, Memory, Disk, Network) |

| +--------------------+ +---------------------+ |

| | VM 1 | | VM 2 | |

| +--------------------+ +---------------------+ |

| +--------------------+ +---------------------+ |

| | VM 3 | | VM 4 | |

| +--------------------+ +---------------------+ |

+--+

 VMs share the underlying physical resources, optimizing the utilization of the server.

6. Flexibility and Scalability

 Definition: Virtualization allows the dynamic allocation of resources and provides the ability

to scale systems easily by adding or removing resources to VMs as needed.

 Explanation: Administrators can modify VM resources like CPU, memory, or storage

without needing to shut down the VM. VMs can also be cloned or replicated to meet

increasing workload demands.

Diagram: Flexibility and Scalability

+--------------------------+ +-------------------------+

| VM 1 (Initial Resources) | | VM 1 (Scaled Resources) |

| CPU: 2 Cores | --> | CPU: 4 Cores |

| RAM: 4 GB | | RAM: 8 GB |

+--------------------------+ +-------------------------+

 Resources can be scaled up or down based on workload requirements, providing flexibility to

adapt to demand.

7. Manageability

 Definition: Virtualization simplifies the management of data centers by providing centralized

control over all virtualized resources.

 Explanation: Administrators can manage VMs, storage, and network resources from a single

interface, often using tools provided by the hypervisor or third-party management software.

Diagram: Centralized Manageability

+-----------------------------+

| Virtualization Manager |

| +-------------------------+ |

| | Manage VMs | |

| | Monitor Resources | |

| | Allocate Resources | |

| +-------------------------+ |

+-----------------------------+

+-------------------+ +-------------------+ +-------------------+

| Physical Host 1 | | Physical Host 2 | | Physical Host 3 |

| +---------------+ | | +---------------+ | | +---------------+ |

| | VM 1 | | | | VM 3 | | | | VM 5 | |

| | VM 2 | | | | VM 4 | | | | VM 6 | |

+-------------------+ +-------------------+ +-------------------+

 Virtualization platforms offer centralized tools for easy management, improving operational

efficiency.

5.a Explain the major distributed technologies that led to cloud computing?5M

Cloud computing has evolved from a range of distributed technologies that collectively laid the

foundation for today's cloud services. These technologies enabled large-scale, distributed systems

capable of handling vast amounts of data and providing reliable, scalable, and flexible computing

resources. Below are the major distributed technologies that played a pivotal role in the development

of cloud computing:

1. Cluster Computing

 Definition: Cluster computing is the use of multiple computers (or nodes) linked together to

work on a single task or set of tasks. These computers work as a unified system, often using a

high-speed network.

 Key Features:

o Resource Sharing: Multiple nodes share their resources (CPU, memory, storage) to

process large-scale tasks.

o Fault Tolerance: If one node fails, others can take over the work.

o High Availability: Redundant components ensure continuous operation.

Role in Cloud Computing:

 Scalability: Cluster computing introduced the concept of scaling workloads across multiple

machines, which is a key feature of cloud computing.

 Resource Management: Clusters provided early methods for managing distributed

computing resources, later refined in cloud platforms.

Example:

 Google's Early Clusters: Google used clusters to handle search engine workloads,

pioneering distributed systems that could scale to thousands of machines, setting the stage for

cloud infrastructure.

2. Grid Computing

 Definition: Grid computing refers to a distributed computing model where geographically

dispersed and heterogeneous computing resources are used to solve large-scale problems.

Unlike clusters, grid computing typically focuses on resource pooling from different

administrative domains.

 Key Features:

o Heterogeneity: Combines resources from various locations and systems.

o Resource Allocation: Tasks are distributed across multiple systems based on resource

availability.

o Parallel Processing: Grid systems split tasks into smaller units that can be processed

concurrently.

Role in Cloud Computing:

 Decentralization: Grid computing allowed for distributed resources to be pooled across

multiple locations, similar to how cloud services distribute workloads across data centers

globally.

 Virtualization Concept: The abstraction of resources in grid computing influenced cloud

computing’s use of virtualization to manage distributed resources.

Example:

 SETI@home: One of the most famous grid computing projects, where volunteers contributed

idle computing resources to analyze radio signals for extraterrestrial life.

3. Virtualization

 Definition: Virtualization is the creation of a virtual version of computing resources, such as

servers, storage, and networks. It allows multiple virtual machines (VMs) to run on a single

physical machine.

 Key Features:

o Resource Abstraction: Physical hardware is abstracted into multiple virtual

instances.

o Isolation: Each VM operates independently, without affecting others.

o Efficiency: Virtualization maximizes the utilization of physical resources.

Role in Cloud Computing:

 Core of Cloud Infrastructure: Virtualization is at the heart of cloud computing. It allows

cloud providers to offer multiple VMs to different users on the same physical infrastructure.

 Elasticity: Virtualization enabled dynamic allocation and deallocation of resources, allowing

cloud services to scale up or down based on demand.

Example:

 VMware: Pioneered early virtualization technologies, making it possible to run multiple

operating systems on a single server, an essential feature in cloud infrastructure.

4. Service-Oriented Architecture (SOA)

 Definition: SOA is a design pattern where software components are designed as discrete

services that communicate over a network. Each service performs a specific function and can

interact with other services.

 Key Features:

o Loose Coupling: Services are independent and communicate via standard protocols.

o Reusability: Services can be reused across different applications or platforms.

o Interoperability: Services use open standards, ensuring compatibility across systems.

Role in Cloud Computing:

 Cloud Service Models: SOA paved the way for cloud service models like SaaS, PaaS, and

IaaS, where services (compute, storage, networking) are offered over the internet.

 Microservices Architecture: Cloud-native applications often use a microservices

architecture, which is an evolution of SOA.

Example:

 Amazon Web Services (AWS): AWS uses SOA principles to offer a wide range of cloud

services like EC2 (compute), S3 (storage), and RDS (databases), each acting as independent

services that can be consumed by applications.

5. Distributed Computing

 Definition: Distributed computing refers to the use of multiple independent computers

working together to perform tasks as if they were a single system. These systems

communicate over a network to share resources and tasks.

 Key Features:

o Task Distribution: Tasks are broken into smaller sub-tasks, which are processed

across multiple machines.

o Data Consistency: Distributed systems ensure that all nodes have a consistent view

of data.

o Coordination and Synchronization: Algorithms ensure the proper coordination

between distributed processes.

Role in Cloud Computing:

 Scalable Computing: Distributed computing allows cloud platforms to offer scalable and

resilient services by distributing tasks across multiple servers.

 Data Centers and Cloud Infrastructure: Cloud data centers are essentially distributed

systems where resources are spread across multiple machines, often in different locations.

Example:

 Google MapReduce: A distributed computing framework developed by Google that breaks

down large-scale computations into smaller tasks processed across many machines, forming

the basis for cloud computing frameworks like Hadoop.

6. Peer-to-Peer (P2P) Computing

 Definition: P2P computing is a decentralized computing model where each node (peer) in the

network can act as both a client and a server. Resources are shared directly between peers

without the need for central coordination.

 Key Features:

o Decentralization: No central authority controls the network; each peer is equal.

o Resource Sharing: Peers contribute and consume resources such as storage and

bandwidth.

o Scalability: P2P systems can scale as more peers join the network.

Role in Cloud Computing:

 Decentralized Resource Management: P2P concepts influenced cloud systems in

decentralizing the management of resources across geographically distributed data centers.

 File Sharing and Storage: P2P introduced distributed file systems, which influenced cloud-

based distributed storage services.

Example:

 BitTorrent: A popular P2P file-sharing protocol that inspired decentralized storage and

computing models used in modern distributed systems.

7. Utility Computing

 Definition: Utility computing refers to the provision of computing resources as a metered

service, much like utilities (electricity, water). Users pay for the resources they consume, such

as CPU power, storage, or network bandwidth.

 Key Features:

o On-Demand Resources: Users can access resources as needed, without needing to

purchase or maintain hardware.

o Metered Pricing: Charges are based on usage, allowing for cost efficiency.

o Elasticity: Resources can be dynamically allocated based on demand.

Role in Cloud Computing:

 Pay-as-you-go Model: Utility computing laid the foundation for the cloud's pricing model,

where users only pay for what they use.

 Elastic Cloud Services: Cloud computing adopted the flexibility of utility computing by

offering scalable resources that can be provisioned on demand.

Example:

 Amazon EC2: Offers on-demand compute resources, where users pay for the hours their

instances run, reflecting the utility computing model.

8. Distributed Storage Systems

 Definition: Distributed storage systems allow data to be stored across multiple physical

locations, often across several servers or data centers. Data is typically replicated to ensure

availability and fault tolerance.

 Key Features:

o Data Redundancy: Data is duplicated or replicated across multiple nodes for

reliability.

o Scalability: Data storage can grow horizontally by adding more nodes to the system.

o Fault Tolerance: The system continues to function even if some nodes fail.

Role in Cloud Computing:

 Cloud Storage: Distributed storage systems form the backbone of cloud storage services,

enabling scalable, reliable, and available storage across geographically distributed locations.

 Data Durability: Cloud providers use distributed storage to ensure high data durability, with

mechanisms for replication and data integrity.

Example:

 Google File System (GFS): A distributed storage system that allows Google to store vast

amounts of data across thousands of servers, which influenced the development of distributed

storage in cloud computing.

5.b. Briefly describe the challenges ahead in cloud computing? 5M

Cloud computing faces several challenges as it continues to evolve and grow in popularity. These

challenges are important for cloud providers, businesses, and users to address to ensure the ongoing

success and security of cloud-based systems. Below are some of the key challenges ahead in cloud

computing:

1. Security and Privacy

 Data Breaches: As more sensitive data is moved to the cloud, the risk of data breaches

increases. Ensuring strong encryption, access controls, and secure protocols is critical.

 Compliance: Meeting regulatory requirements (e.g., GDPR, HIPAA) across different regions

and industries poses a challenge, as data privacy laws vary.

 Data Isolation: Multi-tenant environments, where different users share the same

infrastructure, must ensure that data is adequately isolated and protected.

2. Latency and Network Issues

 Latency: Cloud services depend on network connections. High latency can be problematic for

real-time applications, such as video streaming, gaming, or financial services.

 Bandwidth Limitations: Users may experience slow data transfer speeds or service

disruptions if network bandwidth is limited, especially in remote or rural areas.

3. Vendor Lock-in

 Proprietary Technologies: Many cloud providers use proprietary technologies, making it

difficult for customers to migrate from one cloud provider to another.

 Migration Costs: Moving applications, data, and services between different cloud platforms

can be complex, time-consuming, and costly.

4. Data Management and Storage

 Data Integrity: Ensuring that data is accurate, consistent, and protected from corruption or

unauthorized modification is essential, especially in distributed cloud environments.

 Storage Costs: Although cloud storage offers scalability, it can become expensive as data

volumes grow, particularly if not managed efficiently.

5. Interoperability and Integration

 Lack of Standardization: Different cloud platforms often have incompatible APIs, making it

challenging to integrate services across multiple clouds or with on-premises systems.

 Hybrid Cloud Complexity: Managing and integrating data and applications across public,

private, and hybrid cloud environments requires sophisticated tools and expertise.

6. Performance Optimization

 Resource Allocation: Optimally allocating cloud resources (compute, storage, and network)

to meet performance requirements without over-provisioning is a significant challenge.

 Scaling Issues: While the cloud is designed to scale, unpredictable traffic spikes or inefficient

scaling mechanisms can lead to performance bottlenecks or service outages.

7. Cost Management

 Hidden Costs: While cloud computing is marketed as cost-efficient, unexpected expenses

(such as data egress charges, API calls, or underused resources) can lead to higher-than-

expected bills.

 Budgeting and Forecasting: Accurately forecasting cloud usage and managing costs

effectively, especially in dynamic environments, is a challenge for businesses.

8. Energy Consumption and Sustainability

 Data Center Energy Use: As cloud data centers grow, they consume significant amounts of

energy. Ensuring energy-efficient operations and reducing the carbon footprint is a growing

concern.

 Green Cloud Computing: There is a rising need for sustainable cloud practices, including

the use of renewable energy sources and energy-efficient infrastructure.

9. Regulatory and Legal Issues

 Data Sovereignty: Regulations regarding where data can be stored and processed vary across

countries. Ensuring compliance with these laws can be challenging, especially for global

organizations.

 Jurisdictional Disputes: Cloud services often span multiple jurisdictions, leading to complex

legal disputes over data ownership, access, and liability.

10. Skill Shortages

 Cloud Expertise: As cloud technologies evolve, there is a growing need for professionals

with expertise in cloud architecture, security, and management. The demand for cloud-skilled

talent often exceeds supply.

 Training and Certification: Continuous training and certification are required to keep up

with the rapid development of cloud technologies and services.

6.a Explain the salesforce and force.com architecture? [5+5]

Salesforce and Force.com (now known as Salesforce Platform) are built on a highly scalable and

secure multi-tenant architecture. This architecture allows multiple customers (or tenants) to share the

same underlying infrastructure while ensuring data separation and security for each tenant. The

architecture is designed to provide flexibility, scalability, and extensibility for building custom

applications and managing customer relationships. Below is an explanation of the Salesforce and

Force.com architecture.

1. Multi-Tenant Architecture

 Definition: In Salesforce’s multi-tenant architecture, multiple customers (tenants) share the

same software and hardware infrastructure while their data is securely isolated.

 Key Features:

o Resource Sharing: All customers use the same physical resources (servers, storage,

network), reducing costs.

o Data Isolation: Each tenant’s data is kept separate and secure, preventing access by

other tenants.

o Automatic Upgrades: All customers benefit from the same version of the platform,

with updates and new features automatically pushed to everyone without downtime.

Diagram: Multi-Tenant Architecture

+-----------------------------+

| Salesforce Platform |

| +-------------------------+ |

| | Shared Infrastructure | | -> Multi-tenancy

| | (Compute, Storage, DB) | |

| +-------------------------+ |

| +-------------------------+ |

| | Customer A (Data) | | -> Tenant A (Company A)

| +-------------------------+ |

| +-------------------------+ |

| | Customer B (Data) | | -> Tenant B (Company B)

| +-------------------------+ |

+-----------------------------+

2. Layers of Salesforce and Force.com Architecture

A. Trusted Multitenant Cloud (Core Layer)

This forms the foundational layer that includes the physical infrastructure—data centers, servers,

networks, and storage systems. Salesforce ensures high availability, scalability, and security at this

level.

 Security: Salesforce has built-in data encryption, user authentication, and audit controls to

secure tenant data.

 Scalability: The architecture is designed to handle massive workloads by scaling

automatically to support increasing demand without the need for customer intervention.

 Compliance: Salesforce infrastructure complies with various industry regulations such as

GDPR, HIPAA, and SOC 2.

B. Force.com Platform Layer (Application Services)

The Force.com platform layer (now referred to as Salesforce Platform) provides the underlying

services that developers and businesses use to build and deploy custom applications on Salesforce.

 Declarative Customization: Users can build applications and customize Salesforce without

writing code, using point-and-click tools.

 Programmatic Customization: Developers can use languages like Apex (Salesforce's

proprietary programming language) and Visualforce to build custom logic, business

workflows, and user interfaces.

Key Components:

1. Database as a Service (DaaS): Salesforce provides a highly scalable database where all data

is stored in objects (analogous to database tables).

o Standard Objects: Pre-built objects like Accounts, Contacts, Opportunities, and

Leads that are core to CRM functionality.

o Custom Objects: Developers can create custom objects to store data specific to their

organization’s needs.

2. Apex Code: A programming language used to create complex business logic, automate

processes, and interact with Salesforce’s data model.

o Triggers: Apex allows for writing triggers that execute custom code in response to

certain actions on data (e.g., creating, updating records).

3. Visualforce: A markup language used to create custom user interfaces on Salesforce.

Visualforce pages can be customized and embedded within standard Salesforce pages or used

for custom applications.

4. Lightning Framework: A component-based framework for building responsive web

applications for mobile and desktop. Salesforce Lightning uses reusable components to speed

up development.

o Lightning Components: Modern UI components that offer better performance and

flexibility than the older Visualforce pages.

o App Builder: A drag-and-drop interface for creating Lightning pages and

applications without coding.

Diagram: Force.com Platform Architecture

+---+

| Force.com Platform |

| +---+ |

| | Database as a Service (Objects) | |

| | - Standard & Custom Objects | |

| | Apex Code (Business Logic) | |

| | Visualforce / Lightning Framework (UI) | |

| +---+ |

+---+

C. Application and Metadata Layer

Salesforce uses metadata-driven development, meaning that every custom app, configuration, or

object is defined by metadata. Metadata defines how data is structured and behaves within the

platform, and this enables easy customization without the need to alter the core codebase.

 Metadata: Everything in Salesforce, including objects, fields, page layouts, workflows, and

security settings, is stored as metadata. This enables a "no code" or "low code" customization

model, allowing users to make changes quickly.

 Schema Builder: A visual tool that allows users to create and modify the data model (objects,

fields, relationships) using a drag-and-drop interface.

Benefits of Metadata-Driven Architecture:

 Rapid Development: Developers can build applications by simply defining metadata,

without needing to handle the underlying infrastructure.

 Seamless Upgrades: Metadata-based apps can automatically adapt to new Salesforce releases

without requiring any code changes.

D. API and Integration Layer

Salesforce provides a robust set of APIs for integrating with external systems and applications. This

layer allows for seamless interaction between Salesforce and third-party apps.

Key APIs:

1. SOAP API: Enables the exchange of structured data for integration with legacy systems.

2. REST API: Used for lightweight integrations with web services or mobile apps, providing a

simpler and more efficient way to interact with Salesforce data.

3. Bulk API: Optimized for handling large volumes of data by processing multiple records in

batches.

4. Streaming API: Enables real-time notifications of changes to Salesforce data, supporting

event-driven architectures.

Integration Patterns:

 Enterprise Service Bus (ESB): Salesforce can integrate with ESBs to facilitate complex,

enterprise-wide integrations.

 Middleware: Salesforce integrates with middleware solutions like Mulesoft to allow data

exchange between cloud and on-premises systems.

E. User Interface Layer

The User Interface (UI) layer is how users interact with Salesforce, either via desktop browsers or

mobile apps.

 Salesforce Lightning Experience: The modern user interface for Salesforce that provides a

responsive, mobile-first design, optimized for business workflows.

 Salesforce Classic: The older UI, still in use by some customers, although Salesforce

encourages migration to the Lightning Experience.

 Salesforce Mobile: A fully functional mobile application that provides access to Salesforce

data and applications from mobile devices.

3. Security and Compliance Layer

Salesforce places a strong emphasis on security, providing a multi-layered security architecture that

includes:

 User Authentication: Single Sign-On (SSO), Multi-Factor Authentication (MFA), and OAuth

support to ensure secure access.

 Role-Based Access Control: Permissions and access are managed through roles, profiles, and

permission sets, ensuring that users only have access to the data they need.

 Encryption: Data at rest and in transit is encrypted to ensure data privacy and security.

 Compliance: Salesforce complies with global regulatory frameworks, including GDPR,

HIPAA, and ISO standards.

