

USN

Internal Assessment Test 1 – March 2024

Sub: NoSQL Database Sub Code: 21CS745 Branch: AIML

Date: Duration: 90 min’s Max Marks: 50 Sem/Sec: VIII / A OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

1 a) Define materialized view. How are they different from views? Briefly explain the two

main strategies to build materialized view
10M CO1 L2

2 a) What is NoSQL? Explain about aggregate data models with neat diagram.

Considering example of Relational data models.
10M CO1 L2

3 a) Explain the data management and access in column family data stores with example 6M CO1 L2

3 b) Briefly describe the value of relational databases.

4M CO1 L2

4 a) Identify the type of conflict in the following scenario, How can it be solved by

applying suitable technique? Alice and Bob share a common Google sheet online.

Both read a file. Alice updates the document and forgets to save the file. On the other

hand Bob updates the sheet and saves the file. The content updated by Alice

overwritten by Bob. The data updated by Alice is lost.

10M CO2 L3

5 a) Explain about Update Consistency and Read Consistency, with an example. 10M CO2 L2

USN

Internal Assessment Test 1 – March 2024

Sub: NoSQL Database Sub Code: 21CS745 Branch: AIML

Date: Duration: 90 min’s Max Marks: 50 Sem/Sec: VIII / A OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

1 a) Define materialized view. How are they different from views? Briefly explain the two

main strategies to build materialized view

10M CO1 L2

2 a) What is NoSQL? Explain about aggregate data models with neat diagram.

Considering example of Relational data models.

10M CO1 L2

3 a) Explain the data management and access in column family data stores with example 6M CO1 L2

3 b) Briefly describe the value of relational databases.

4M CO1 L2

4 a) Identify the type of conflict in the following scenario, How can it be solved by

applying suitable technique? Alice and Bob share a common Google sheet online.

Both read a file. Alice updates the document and forgets to save the file. On the other

hand Bob updates the sheet and saves the file. The content updated by Alice

overwritten by Bob. The data updated by Alice is lost.

10M CO2 L3

5 a) Explain about Update Consistency and Read Consistency, with an example. 10M CO2 L2

6 a) Explain briefly impedance mismatch, with a neat diagram. 5M CO1 L2

6 b) Use the above diagram and answer the following questions.

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

e) What are the genders of C and A?

5M CO1 L3

Faculty Signature CCI Signature HOD Signature

6 a) Explain briefly impedance mismatch, with a neat diagram. 5M CO1 L2

6 b) Use the above diagram and answer the following questions.

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

e) What are the genders of C and A?

5M CO1 L3

Faculty Signature CCI Signature HOD Signature

Scheme of Evaluation

Internal Assessment Test 1 – March 2024

Sub: NoSQL Database Sub Code: 21CS745 Branch: AIML

Date: Duration: 90 min’s Max Marks: 50 Sem/Sec: VIII / A OBE

Answer any FIVE FULL Questions

Q No Description

Marks Distribution

Max

MARKS

1 a) Define materialized view. How are they different from views?

Briefly explain the two main strategies to build materialized

view

Define materialized view

Two approaches

Eager approach

Batch approach

2M

4M

4M

10M 10M

2 a) What is NoSQL? Explain about aggregate data models with

neat diagram. Considering example of Relational data models.

Definition NoSQL

Diagram

Explanation

2M

3M

5M

10M 10M

3 a) Explain the data management and access in column family data

stores with example

Diagram

Explanation

3M

3M

6M 6M

3 b) Briefly describe the value of relational databases.

Getting persistent data

Concurrency

Integration

2M

1M

1M

4M 4M

4 a) Identify the type of conflict in the following scenario,

How can it be solved? Alice and Bob share a

common Google sheet online. Both read a file. Alice

updates the document and forgets to save the file. On

the other hand Bob updates the sheet and saves the

10M 10M

file. The content updated by Alice overwritten by

Bob. The data updated by Alice is lost.

Write-write conflict

Locks used explanation with example

2M

4M

4M

5 a) Explain about Update Consistency and Read Consistency, with

an example.

Update Consistency

Examples

Read Consistency

Examples

2M

3M

2M

3M

10M 10M

6 a) Explain briefly impedance mismatch, with a neat diagram.

Diagram

explanation

2M

3M

5M 5M

6 b) Use the above diagram and answer the following questions.

f) Who listens to rock music and works for D?

g) Who works for D and has married to colleagues?

h) Who listen to rock music?

i) How are A and S related to each other and also to C?

j) What are the genders of C and A?

1M each 5M 5M

Solution

Q. 1 a) Define materialized view. How are they different from views? Briefly explain the two main

strategies to build materialized view

Ans.

2 a) What is NoSQL? Explain about aggregate data models with neat diagram. Considering

example of Relational data models.

Ans. NoSQL, also referred to as “not only SQL” or “non-SQL”, is an approach to database design that

enables the storage and querying of data outside the traditional structures found in relational databases.

Example of Relations and Aggregates At this point, an example may help explain what we’re talking about.

Let’s assume we have to build an e-commerce website; we are going to be selling items directly to

customers over the web, and we will have to store information about users, our product catalog, orders,

shipping addresses, billing addresses, and payment data. We can use this scenario to model the data using a

relation data store as well as NoSQL data stores and talk about their pros and cons. For a relational database,

we might start with a data model shown in Figure 2.1. Figure 2.1. Data model oriented around a relational

database (using UML notation

In this model, we have two main aggregates: customer and order. We’ve used the black-diamond

composition marker in UML to show how data fits into the aggregation structure. The customer contains a

list of billing addresses; the order contains a list of order items, a shipping address, and payments. The

payment itself contains a billing address for that payment. A single logical address record appears three

times in the example data, but instead of using IDs it’s treated as a value and copied each time. This fits the

domain where we would not want the shipping address, nor the payment’s billing address, to change. In a

relational database, we would ensure that the address rows aren’t updated for this case, making a new row

instead. With aggregates, we can copy the whole address structure into the aggregate as we need to. The link

between the customer and the order isn’t within either aggregate—it’s a relationship between aggregates.

Similarly, the link from an order item would cross into a separate aggregate structure for products, which we

haven’t gone into. We’ve shown the product name as part of the order item here—this kind of

denormalization is similar to the tradeoffs with relational databases, but is more common with aggregates

because we want to minimize the number of aggregates we access during a data interaction. The important

thing to notice here isn’t the particular way we’ve drawn the aggregate boundary so much as the fact that

you have to think about accessing that data—and make that part of your thinking when developing the

application data model. Indeed we could draw our aggregate boundaries differently, putting all the orders for

a customer into the customer aggregate.

Q 3 a) Explain the data management and access in column family data stores with example

Ans.

Q. 3 b) Briefly describe the value of relational databases.

Ans.

4 a) Identify the type of conflict in the following scenario, How can it be solved by

applying suitable technique? Alice and Bob share a common Google sheet online.

Both read a file. Alice updates the document and forgets to save the file. On the other

hand Bob updates the sheet and saves the file. The content updated by Alice

overwritten by Bob. The data updated by Alice is lost

Ans. This issue is called as write-write conflict: two people updating the same data item at the same time.

When the writes reach the server, the server will serialize them—decide to apply one, then the other.

In this case Alice’s is a lost update. Here the lost update is not a big problem, but often it is. We see this as a

failure of consistency because Bob’s update was based on the state before Alice’s update, yet was applied

after it. She forgot to save the file. Approaches for maintaining consistency in the face of concurrency are

often described as pessimistic or optimistic. A pessimistic approach works by preventing conflicts from

occurring; an optimistic approach lets conflicts occur, but detects them and takes action to sort them out. For

update conflicts, the most common pessimistic approach is to have write locks, so that in order to change a

value you need to acquire a lock, and the system ensures that only one client can get a lock at a time.

So Alice and Bob would both attempt to acquire the write lock, but only Alice(the first one) would succeed.

Bob would then see the result of Bob’s write before deciding whether to make his own update.

There is another optimistic way to handle a write-write conflict—save both updates and record that they are

in conflict. This approach is familiar to many programmers from version control systems, particularly

distributed version control systems that by their nature will often have conflicting commits. The next step

again follows from version control: You have to merge the two updates somehow. Maybe you show both

values to the user and ask them to sort it out— this is what happens if you update the same contact on your

phone and your computer. Alternatively, the computer may be able to perform the merge itself; if it was a

phone formatting issue, it may be able to realize that and apply the new number with the standard format.

Any automated merge of write-write conflicts is highly domain-specific and needs to be programmed for

each particular case. Often, when people first encounter these issues, their reaction is to prefer pessimistic

concurrency because they are determined to avoid conflicts. While in some cases this is the right answer,

there is always a tradeoff.

Concurrent programming involves a fundamental tradeoff between safety (avoiding errors such as update

conflicts) and liveness (responding quickly to clients). Pessimistic approaches often severely degrade the

responsiveness of a system to the degree that it becomes unfit for its purpose. This problem is made worse

by the danger of errors—pessimistic concurrency often leads to deadlocks, which are hard to prevent and

debug. Replication makes it much more likely to run into write-write conflicts. If different nodes have

different copies of some data which can be independently updated, then you’ll get conflicts unless you take

specific measures to avoid them. Using a single node as the target for all writes for some data makes it much

easier to maintain update consistency. Of the distribution models we discussed earlier, all but peer-to-peer

replication do this.

5 a) Explain about Update Consistency and Read Consistency, with an example.

Ans.

Read Consistency

Having a data store that maintains update consistency is one thing, but it doesn’t guarantee that readers of

that data store will always get consistent responses to their requests. Let’s imagine we have an order with

line items and a shipping charge. The shipping charge is calculated based on the line items in the order. If

we add a line item, we thus also need to recalculate and update the shipping charge. In a relational database,

the shipping charge and line items will be in separate tables. The danger of inconsistency is that Martin adds

a line item to his order, Pramod then readsthe line items and shipping charge, and then Martin updatesthe

shipping charge. This is an inconsistent read or read-write conflict: In Figure 2.1 Pramod has done a read in

the middle of Martin’s write.

Q. 6 a) Explain briefly impedance mismatch, with a neat diagram.

Ans.

 For application developers, the biggest frustration has been what’s commonly called the impedance

mismatch: the difference between the relational model and the in-memory data structures.

 The relational data model organizes data into a structure of tables and rows, or more properly,

relations and tuples.

6 b) Use the above diagram and answer the following questions.

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

e) What are the genders of C and A?

Ans.
a) C

b) E

c) C, A

d) A is married C and sister-in law to S

e) A is female & C is Male.

