US

N k
Internal Assessment Test 1
Sub | DATA STRUCTURES AND Sub | BCS30 Branch: AIML,CSE-
: APPLICATIONS Code: | 4 | AIML
920 Max
Date: Duration: | minute | Marks g Sem/Sec‘ I -A, B, C OBE
S :)
Answer any FIVE FULL Questions MASRK CO | RBT
'Write the code snippets for isFull() and isEmpty() of a Stack.Consider a
stack where the data are pushed to (PUSH operation) and popped from
(POP operation) in the following order:
PUSH 3; TOP; PUSH 7; TOP; PUSH 6; PUSH 9; TOP; POP; POP;
TOP;
I'la where the PUSH inserts an item onto the stack, POP deletes an item 4M ! L3
from the stack and TOP returns the top position element of the
stack. Write the values returned by TOP for the sequence of operations
above.
Differentiate between Structure and union with a suitable
example. Write the output for the below code snippet.
#include<stdio.h>
struct st
{
int x;
struct st *next;
bl oM | 1| L3
int main()
{
struct st temp;
temp.x = 10;
temp.next = temp;
printf("%d", temp.next.x);
return O;
}

Write and apply the algorithm to convert the below infix
expression to a postfix expression (((a/b)-c)+(d*e))-(a*c)

M

L3

Write an algorithm to evaluate a postfix expression. Trace the
algorithm for the following expression showing the stack
contents 6 5 1-423"/+.

M

L3

Develop functions to implement the following using singly
linked list:

i)Delete a node from the front

i1) Concatenate two linked lists.

6M

L2

Explain the representation of a sparse matrix (using Linked List
and Array).

00304

00570

00000

02600

4M

L2

'What is Circular Queue in a Data Structure?Explain the
operations.

4M

L2

Develop C functions to implement the following in a doubly
linked list:

1) Insert a node at the front

i1) Delete a node from the end.

6M

L2

'What is a Doubly Linked List? Explain the representation of
Doubly Linked List .Write the code for the following:

a) print all the data of nodes .
b) Find the length of list.

10M

L2

Write a program to solve tower of Hanoi problem. Trace it for 3
disks with diagram.

SM

L3

Write the C function to add two polynomials. Show the linked
representation of the below two polynomials and their addition
using a circular singly linked list
P1:5x3 +4x2 +7x + 3
P2: 6x2 +5
Output: add the above two polynomials and represent them
using the linked list.

M

L3

Cl

CCI

1a)

isFull() (1M)

{
If(top==N-1)
Printf(“Stack OverFlow”);

}
isEmpty() (1M)
{
If(top==-1)
Printf(“stack is empty”);
}

All the Best

HOD

2 marks

L PUSE & \

£ Vﬁni-: 3

PusH 3 | 4\

b)

2 M(any 2 with example)

STRUCTURE UNION
Keyword The keyword structis usedto define a structure The keyword union is usedto define a union.

Size When avariable is associated with a structure, the when avariable is associated with a union, the compiler
compiler allocates the memaory for each member. The allocates the memory by considerngthe size of the
size of structure is greater than or equal to the sum of largest memaory. So, size of union is equal to the size
sizes of its members. of largest member.

Memory Each memberwithin a structure is assigned unique Memory allocated is shared by individual members of
storage area of location. union.
Value Altering the value of a member will not affed other Altering the value of any of the memberwill alter other
Altering members of the structure. membervalues.
Accessing - . _
members Individual member can be accessed atatime. Only one member can be accessed atatime.
Initialization R)) R
of Members Several members of a structure caninitialize at once. Onlythe firstmember of aunion can be initialized.
b) ERROR 4 M
2 a)Algorithm 2M

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, put it in the postfix expression.

3. Otherwise, do the following

e If the precedence of the current scanned operator is higher than the
precedence of the operator on top of the stack, or if the stack is empty, or
if the stack contains a ‘(‘, then push the current operator onto the stack.

e Else, pop all operators from the stack that have precedence higher than or
equal to that of the current operator. After that push the current operator
onto the stack.

4. If the scanned character is a ‘(‘, push it to the stack.

5. If the scanned character is a ‘), pop the stack and output it until a ‘(‘ is
encountered, and discard both the parenthesis.

6. Repeat steps 2-5 until the infix expression is scanned.

7. Once the scanning is over, Pop the stack and add the operators in the postfix
expression until it is not empty.

8. Finally, print the postfix expression.

ANSWER
ab/c-de*+ac*-

Infix to Postfix table 3M

ab/c-
ab/c-d
ab/c-d
ab/c-de

ab/c-de*

ab/c-de*+

ab/c-de*+
ab/c-de*+

ab/c-de*+a

ab/c-de*+a

ab/c-de*+ac
ab/c-de*+ac*

ab/c-de*+ac*-

2M
Create a stack to store operands (or values).

Scan the given expression from left to right and do the following for every
scanned element.

o Ifthe element is a number, push it into the stack.

o If the element is an operator, pop operands for the operator from the
stack. Evaluate the operator and push the result back to the stack.

When the expression is ended, the number in the stack is the final answer.

3M

3a. i) 3M
struct Node* deleteHead(struct Node* head) {

if (head == NULL)
return NULL;
NODE temp = head;

head = head->next;
free(temp);

return head;

}

) 3M

struct Node *concat(struct Node *head1, struct Node *head2) {
if (head1 == NULL)

return head2;

struct Node *curr = head1;

while (curr->next != NULL){
curr = curr->next;

}

curr->next = head?;

return head1,;

}
b) 2M

A matrix is a two-dimensional data object made of m rows and n columns, therefore
having total m x n values. If most of the elements of the matrix have 0 value, then it is
called a sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

e Storage: There are lesser non-zero elements than zeros and thus lesser
memory can be used to store only those elements.

e Computing time: Computing time can be saved by logically designing a data
structure traversing only non-zero elements..

e Example:

https://www.geeksforgeeks.org/data-structures/#Matrix

[IR
[IR
o Ul W
O N
(O

© 2600

e Representing a sparse matrix by a 2D array leads to wastage of lots of
memory as zeroes in the matrix are of no use in most of the cases. So,
instead of storing zeroes with non-zero elements, we only store
non-zero elements. This means storing non-zero elements with triples-
(Row, Column, value).

e Sparse Matrix Representations can be done in many ways following
are two common representations:
Array representation
Linked list representation

Method 1: Using Arrays:

2D array is used to represent a sparse matrix in which there are three rows named as
e Row: Index of row, where non-zero element is located
e Column: Index of column, where non-zero element is located
e Value: Value of the non zero element located at index — (row,column)

Method 2: Using Linked Lists
In linked list, each node has four fields. These four fields are defined as:

¢ Row: Index of row, where non-zero element is located

e Column: Index of column, where non-zero element is located

Value: Value of the non zero element located at index — (row,column).

Next node: Address of the next node

Circular Queue is an extended version of a normal queue where the last element of the

queue is connected to the first element of the queue forming a circle. In a normal

Queue, we can insert elements until queue becomes full. But once queue becomes full,
we can not insert the next element even if there is a space in front of queue.--------- 2M

e enQueue(value) This function is used to insert an element into the circular
queue. In a circular queue, the new element is always inserted at the rear
position. 1 M

o Check whether the queue is full —[i.e., the rear end is in just before the
front end in a circular manner].

o Ifitis full then display Queue is full.

o If the queue is not full then, insert an element at the end of the
queue.

e deQueue() This function is used to delete an element from the circular queue. In
a circular queue, the element is always deleted from the front position. 1 M

o Check whether the queue is Empty.
o Ifitis empty then display Queue is empty.

o If the queue is not empty, then get the last element and remove it
from the queue.

4b) 3M

i) struct Node “insertAtFront(struct Node *head, int new_data) {
struct Node “new_node = createNode(new_data);
new_node->next = head;
if (head != NULL) {

head->prev = new_node;

}

return new_node;

https://www.geeksforgeeks.org/queue-data-structure/

struct Node* delLast(struct Node *head) {

if (head == NULL)
return NULL;
if (head->next == NULL) {
free(head);
return NULL;
}
struct Node *curr = head;
while (curr->next !'= NULL)
curr->prev->next = NULL;
free(curr);
return head,;
}
5.

A doubly linked list is a data structure that consists of a set of nodes, each of which
contains a value and two pointers, one pointing to the previous node in the list and
one pointing to the next node in the list. This allows for efficient traversal of the list
in both directions, making it suitable for applications where

frequent insertions and deletions are required.-2M

a) void printList(Node* head) 4M
{
Node* temp = head;
printf("Forward List: ");
while (temp != NULL) {
printf("%d ", temp->data);

temp = temp->next;

}
printf("\n");

}
B)

N
<

int findSize(struct Node* curr) {
int size = 0;
while (curr != NULL) {
Size++;
curr = curr->next;

}

return size;

}
6a) 2M

void towerOfHanoi(int n, char from_rod, char to_rod,char aux_rod)
{
if (n==0){
return;
}
towerOfHanoi(n - 1, from_rod, aux_rod, to_rod);
cout << "Move disk " << n << " from rod " << from_rod << " to rod " << to_rod << end];

towerOfHanoi(n - 1, aux_rod, to_rod, from_rod);

// Driver code
int main()

{

int N = 3;
towerOfHanoi(N, 'A’, 'C', 'B");
return O;

3M

—

iDisk 1

i B P Y B c

l_l_LI_L |
A B [+ A B

oy
o
i)

Move disk 1 from rod A to rod C
Move disk 2 from rod A to rod B
Move disk 1 from rod C to rod B
Move disk 3 from rod A to rod C
Move disk 1 from rod B to rod A
Move disk 2 from rod B to rod C
Move disk 1 from rod A to rod C
6a) 2M

struct Node* addPolynomial(struct Node* head1, struct Node* head2) {

if (head1 == NULL) return head2;
if (head2 == NULL) return head1;

if (head1->pow > head2->pow) {
struct Node* nextPtr =addPolynomial(head1->next, head?2);
head1->next = nextPtr;
return head1;

}

else if (head1->pow < head2->pow) {
struct Node* nextPtr = addPolynomial(head1, head2->next);
head2->next = nextPtr;

return head2;

struct Node* nextPtr = addPolynomial(head1->next, head2->next);
head1->coeff += head2->coeff;
head1->next = nextPtr;

return head1;

3 M

