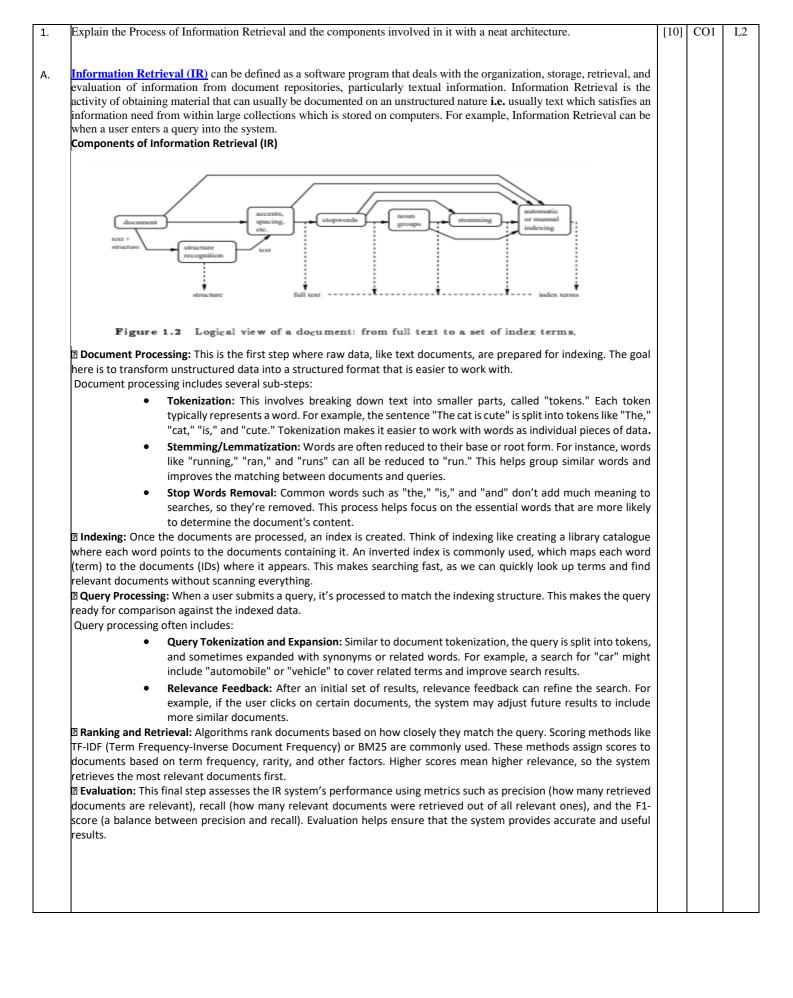
TICNT					
ODIN					

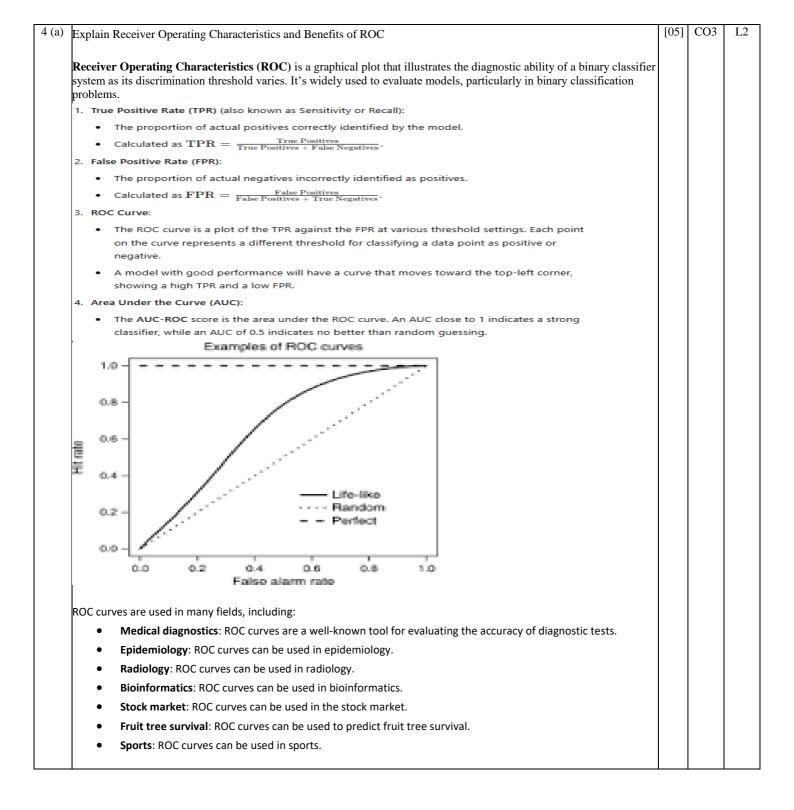
Internal Assessment Test 1 - Nov 2024

Sub:	INFORMATION I	RETRIEVAL				Sub Code:	BAI515B	Bra	nch:	AIMI		
Date:	06 / 11/2024	Duration:	90 mins	Max Marks:	50	Sem / Sec:	V /	A,B,C			OE	BE
			Answer An	y of 5 Questions					MA	RKS	CO	RBT
1	Explain the Process	of Information	Retrieval and the	he components inv	olved	in it with a neat	t architecture.		[10]	CO1	L2
2 (a)	Define the Vector N	Model and the a	advantages of th	ne Vector Model?					[(05]	CO2	L2
(b)	Can the TF-IDF we	ight of a term i	n a document e	xceed? why?					[(05]	CO2	L2
	Consider the followi Query- Obama healt D1: Obama rejects a D2: The Plan is to v D3:Obama raises co Estimate the probabi	th Plan Illegations abou isit Obama ncerns with US	it his own bad h 5 health plan ref	forms	uery.				[10]	CO2	L3
4 (a)	Explain Receiver O _l	perating Charac	eteristics and Be	enefits of ROC					[(05]	CO3	L2
	Consider the Two te: for these two texts?	xts,"Tom and Jo	erry are friends'	' and "Jack and Tor	n are f	riends". Calcul	ate the Cosine sim	nilarity	[(05]	CO2	L3
5.a)	Explain the Types of	f Text Compre	ssion Techniqu	es.					[(05]	CO3	L2
b)	How Does the Large	e amount of Info	ormation availa	ble in Web affect i	nform	ation retrieval s	system Implement	tation?	[(05]	CO1	L2
	If an IR System ret Documents in the co							elevant	[10]	CO3	L3
CI				CCI	_			HOE	D-AIM	L		


TICAL					
LICN					
USIN					

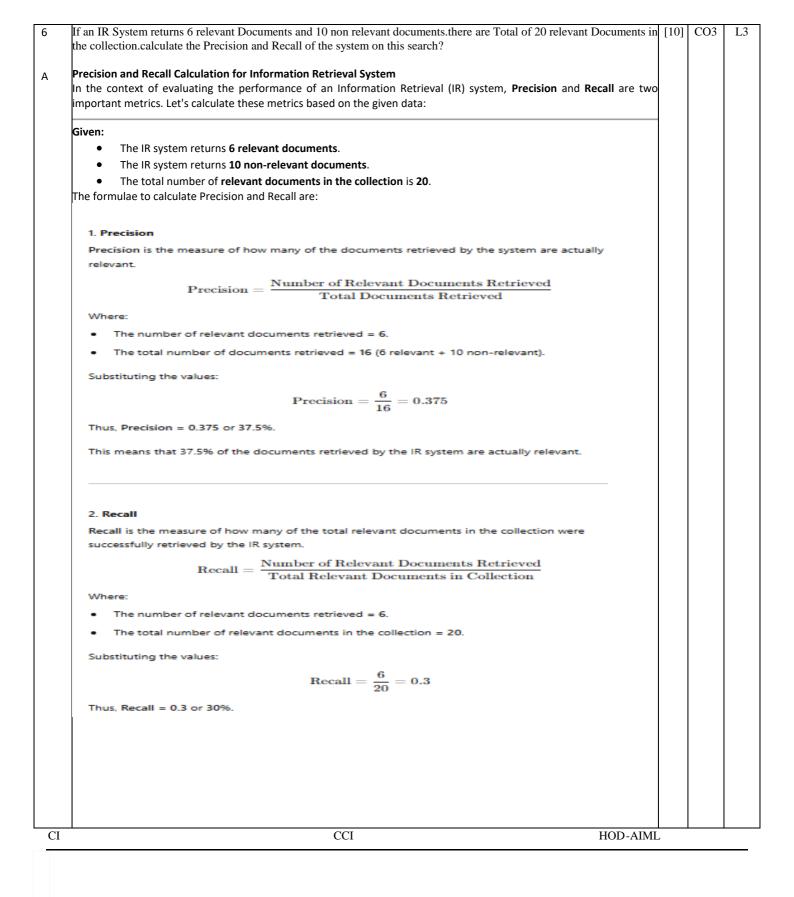
Internal Assessment Test 1 – Nov 2024

				ternar Assessment			1	1			
Sub:	INFORMATION I	RETRIEVAL				Sub Code:	BAI515B	Branch:	AIMI		
Date:	06 / 11/2024	Duration:	90 mins	Max Marks:	50	Sem / Sec:	V /	A,B,C		OB	E
			Answer A	ny of 5 Questions				M	ARKS	CO	RBT
I I	Explain the Process Definition-4 Drawing- 4 Explanation-2	of Information	Retrieval and	the components inv	volved	in it with a near	t architecture.		[10]	CO1	L2
Ι	Define the Vector M Definition & Examp advantages-2		dvantages of t	the Vector Model?					[05]	CO2	L2
Ι	Can the TF-IDF we Definition & Examp why TF-IDF-2		n a document o	exceed? why?					[05]	CO2	L2
C I I I S C	Consider the followi Query- Obama healt D1: Obama rejects a D2: The Plan is to v D3:Obama raises co Estimate the probabi Stop wor & Stemmi Query Comparison v Ranking-4M	th Plan illegations abou isit Obama ncerns with US ility that above ng-2 M	health plan re Documents ar	forms	Juery.				[10]	CO2	L3
I	Explain Receiver Op Definition-3M Benefits-2M	perating Charac	teristics and B	enefits of ROC					[05]	CO3	L2
f I	Consider the Two te: for these two texts? Definition-3M Steps-2M	xts,"Tom and Je	erry are friends	" and "Jack and To	om are f	riends". Calcul	ate the Cosine sin	nilarity	[05]	CO2	L3
Í	Explain the Types of Definition-3M Types-2M	f Text Compre	ssion Techniq	ues.					[05]	CO3	L2
I	How Does the Large Definition-3M Types of Web-2M	e amount of Info	ormation avail	able in Web affect	informa	ation retrieval s	system Implemen	tation?	[05]	CO1	L2
Ι	If an IR System rea Documents in the co Definition-5M Steps-2M							elevant	[10]	CO3	L3
S	Precision & recall-3	М									


USI	N										CMRIT
			Inte	ernal Assessment 7	Fest 1 -	- Nov 2024					
Sub:	INFORMATION F	RETRIEVAL				Sub Code:	BAI515B	Branch:	AIMI	_	
Date:	06 / 11/2024	Duration:	90 mins	Max Marks:	50	Sem / Sec:	V / /	A, B, C		OI	BE
									М	CO	RBT
									А		
			Answer	Any of 5 Question	ns				R		
									Κ		
									S		

Define the Vector Model and the advantages of Vector Model?	[05]	CO2	L
In the <u>Vector Space</u> Model (VSM), each document or query is a N-dimensional vector where N is the number of distinct terms over all the documents and queries. The i-th index of a vector contains the score of the i-th term for that vector.			
The main score functions are based on: Term-Frequency (tf) and Inverse-Document-Frequency(idf). Term Frequency (TF)			
The Term Frequency $tf_{i,j}$ measures the frequency of the i-th term in the j-th document. It is calculated by dividing the number of occurrences of term iii in document j by the total number of terms in document j:			
$ ext{tf}_{i,j} = rac{n_{i,j}}{\sum_k n_{k,j}}$			
• $n_{i,j}$ is the number of occurrences of term i in document j ,			
• $\sum_k n_{k,j}$ is the total number of occurrences of all terms in document j .			
Inverse Document Frequency (IDF)			
The Inverse Document Frequency idf_i evaluates the importance of term i across all documents. Rare terms are given higher weights as they are considered more specific to a document. It is computed as: $idf_i = \log \frac{ D }{ \{d : t_i \in d\} }$			
where:			
• $\left D ight $ is the total number of documents,			
• $ \{d:t_i\in d\} $ is the number of documents containing term $i.$			
$\cos(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\ \mathbf{a}\ \ \mathbf{b}\ } = \frac{\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}_{i}}{\sqrt{\sum_{i=1}^{n} (\mathbf{a}_{i})^{2}} \sqrt{\sum_{i=1}^{n} (\mathbf{b}_{i})^{2}}}$			
where:			
• $\mathbf{a} \cdot \mathbf{b}$ is the dot product of vectors \mathbf{a} and \mathbf{b} ,			ł
 a · b is the dot product of vectors a and b, a and b are the magnitudes (norms) of vectors a and b. 			ļ .
• $\ \mathbf{a}\ $ and $\ \mathbf{b}\ $ are the magnitudes (norms) of vectors \mathbf{a} and \mathbf{b} .			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: 			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: The retrieval performance is improved by its term-weighting method. 			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: The retrieval performance is improved by its term-weighting method. With the help of its partial matching approach, documents that roughly match the 			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: The retrieval performance is improved by its term-weighting method. With the help of its partial matching approach, documents that roughly match the query conditions can be retrieved. The documents are sorted using its cosine ranking formula based on how similar they 			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: The retrieval performance is improved by its term-weighting method. With the help of its partial matching approach, documents that roughly match the query conditions can be retrieved. 			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: The retrieval performance is improved by its term-weighting method. With the help of its partial matching approach, documents that roughly match the query conditions can be retrieved. The documents are sorted using its cosine ranking formula based on how similar they 			
 a and b are the magnitudes (norms) of vectors a and b. Advantages: The retrieval performance is improved by its term-weighting method. With the help of its partial matching approach, documents that roughly match the query conditions can be retrieved. The documents are sorted using its cosine ranking formula based on how similar they 			

Can the TF-IDF weight of a term in a document exceed? why?	[05]	CO2
1. Term Frequency (TF):		
• Definition: Term Frequency measures how frequently a term appears in a document. The more		
frequently a term appears, the more important it is assumed to be for that document.		
• Formula:		
$TF = rac{ ext{Number of times a term appears in a document}}{ ext{Total number of terms in the document}}$		
Purpose: TF helps determine the relevance of a term within a single document. A higher term		
frequency indicates that the term is more significant in that specific document.		
2. Inverse Document Frequency (IDF):		
Definition: Inverse Document Frequency measures how unique or rare a term is across all		
documents in a collection. It helps reduce the weight of common terms (like "the" or "is") that		
appear in many documents and increases the weight of rare terms.		
Formula:		
$IDF = \log\left(rac{ ext{Total number of documents}}{ ext{Number of documents containing the term}} ight)$		
Purpose: IDF gives more weight to terms that are specific to fewer documents, which often		
makes them more relevant to a specific topic.		
Yes, the TF-IDF weight of a term in a document can, in theory, be greater than 1 . 1. High Term Frequency (TF) Contribution :		
 If a term appears frequently within a document (high term frequency), the TF component 		
(e.g., $ ext{tf}_{i,j}=rac{n_{i,j}}{\sum_k n_{k,j}}$) can increase significantly, contributing to a larger overall TF-IDF value.		
2. Logarithmic IDF Function:		
• The IDF component is typically a logarithmic function, such as $\mathrm{idf}_i = \log rac{ D }{ \{d:t_i \in d\} }$. If a		
term is rare across the document corpus, the IDF value can be large, especially if the		
document collection is vast, resulting in a higher TF-IDF score.		
3. No Normalization by Default:		
In standard TF-IDF calculation, there's no explicit normalization to constrain weights		
between 0 and 1, so TF-IDF values can exceed 1 based on the term's relative frequency and		
rarity.		ĺ


Estimate the probab	hility that above Docu				
	onity that above Doed	ments are Relevant to the	he Query.		
	· ·	ma", "health", "Plan". documents and query:			
riere is the Contin g	gency table the given	documents and query.			
Document	Obama	Health	Plan	Total	
Doc 1	3/3 = 1	2/3 = 0.67	0/3 = 0	2	
Doc 2	3/3 = 1	0/3 = 0	2/3 = 0.67	2	
Doc 3	3/3 = 1	2/3 = 0.67	2/3 = 0.67	3	
Total	3	2	2	7	
The probability for	the keywords of Que	ry to exist in the docum	ents is given below		
	9 .	(1 + 2 × 0.67 + 0	× 9		
Probabilit	ty of Doc $1 = \frac{3}{2}$	$ frac{1+2 imes 0.67+0}{7}$	$\frac{2}{2} = 0.62$		
	3×	. 1+0 imes 0.67+2 imes	0.67		
Probability	v of Doc $2 =$	$\frac{1+0\times 0.67+2\times}{7}$	= 0.62		
	9 ~ 1	+2 imes 0.67+2 imes 0	0.67 0.0150		
Probability	of Doc $3 - \frac{3 \times 1}{2}$				

Consider the Two texts, "Tom and Jerry are friends" and "Jack and Tom are friends". Calculate the Cosine similarity for [05] CO2 4 (b) L3 these two texts? Step1: Tokenize the textl Text 1: "Tom and Jerry are friends" Tokens: ["Tom", 'and", "Jerry" "are", "friends] step 2: tokenize the texted Texta: "Jack and Tom are friends" Tokens: [Jack", "and", "Tom", "are", "friends] By combining Tokens Token & [" Tom", "and "," Jerry ", "are", "Friends ", "lack"] Step 3: prepare term breakency vector fortext: VI: [11,1,1,1,1,0] for texto: V2: [1,1,0,1,1,1] Stepy: Obsine Similarity = <u>A.B</u> IAIIB $= \underbrace{(1 \times 1) + (1 \times 1) + (1 \times 0) + (1 \times 1) +$ - 4 RO.8 Cosine similarity=0.8

Explain the Types of Text Compression Techniques.	[05]	CO3
In Information Retrieval (IR) , text compression techniques are essential for reducing storage requirements and improving retrieval efficiency. Text compression can be divided into two main categories : lossless and lossy compression. Lossless compression maintains the exact original text, while lossy compression allows some information to be discarded to achieve higher compression. Below are the primary types of text compression techniques used in IR:	5	
1. Statistical Compression		
Statistical methods rely on analyzing the frequency of characters or patterns in the text and encoding more frequent items with shorter codes.	Ū	
 Huffman Coding: This is a widely-used lossless technique that builds a binary tree based on character frequency. More frequent characters are given shorter binary codes, and less frequent characters are given longer codes. 		
Arithmetic Coding:		
 It encodes the entire message as a single number within a range by recursively subdividing intervals based on symbol probabilities. It is highly efficient and can offer better compression rates than Huffman coding. 		
 Shannon-Fano Coding: Similar to Huffman coding, Shannon-Fano coding assigns shorter codes to more frequent symbols. It's not as optimal as Huffman coding but is simpler. 	5	
2. Dictionary-Based Compression	1	
These methods replace common phrases or words with shorter codes based on a dictionary.		
 Lempel-Ziv-Welch (LZW): LZW builds a dictionary of substrings dynamically as the text is read. It replaces repeated patterns with shorter codes, improving compression for texts with many repeated phrases. 	5	
 Ziv-Lempel (LZ77 and LZ78): Both LZ77 and LZ78 use sliding windows to match strings with previously seen sequences. LZ77 references previous occurrences of a string within a defined window, while LZ78 builds a dictionary as it processes text. 		
3. Transform-Based Compression		
These techniques transform the text to improve compression efficiency by rearranging it into a form that's easier to encode.		
 Burrows-Wheeler Transform (BWT): BWT rearranges the text so that similar characters are grouped together, which enhances the 		
efficiency of other compression techniques like Run-Length Encoding (RLE) or Huffman Coding. This is the foundation for compression algorithms like bzip2 .		
4. Run-Length Encoding (RLE)	1	
Run-Length Encoding: DUE is a straightforward technique where sequences of repeated sharestore are stored as a single		
 RLE is a straightforward technique where sequences of repeated characters are stored as a single character followed by a count. For instance, "aaaabbbb" would be encoded as "a4b4". It works wel for texts with many repeated characters or patterns. 		
5. Hybrid Methods	1	
 Some modern compression algorithms combine multiple techniques to maximize compression. For example, the DEFLATE algorithm used in ZIP files combines LZ77 (dictionary-based) and Huffman coding (statistical) for enhanced efficiency. 		
6. Lossy Compression Techniques		
 While rarely used for general text due to the need for exact data recovery, lossy techniques can be applied to certain types of IR data, like summarization or topic modeling, where approximate data is acceptable 		

	Does the Large amount of Information available in Web affect information retrieval system Implementation?	[05]	CO1	Ι
	Web Information Retrieval System is designed to gather, organize, index, and retrieve relevant	[]		
int	formation from the vast, dynamic content on the internet. Unlike traditional information retrieval			
sy	stems that work with closed document collections, web IR systems must manage vast data, handle			
	rious document formats, and adapt to constantly changing content. Web IR powers search engines like			
	bogle, Bing, and others, focusing on speed, relevance, and user experience.			
	ey Components of a Web Information Retrieval System			
	Web Crawling:			
	• Web crawlers (or spiders) navigate the internet to discover and retrieve web pages. They			
	follow links to build a comprehensive and up-to-date index of available content, periodically			
	revisiting pages to keep the index current.			
2	Indexing:			
2.	• After gathering web pages, the system indexes the content, which involves tokenizing text,			
	removing stop words, stemming, and creating an inverted index . This index allows for rapid			
	searching by mapping each term to the documents in which it appears.			
3.	Document Representation and Metadata Extraction:			
	• Each web page is represented using document vectors (e.g., with TF-IDF or BM25			
	weighting) that quantify term relevance. Metadata, such as page titles, URLs, and tags, is also			
	extracted to enhance retrieval quality.			
4.				
	 User queries are analysed, tokenized, and possibly expanded to match indexed documents 			
	effectively. The IR system ranks documents using relevance-based algorithms (e.g., cosine			
	similarity, BM25), link-based ranking (e.g., PageRank), and often considers user intent,			
	context, and personalization factors.			
5.	Relevance Feedback and Personalization:			
	• Based on user interactions like clicks and time spent on a page, the system adjusts rankings			
	and tailors' future queries to individual preferences, improving relevance and user			
	satisfaction.			
6.	User Interface and Experience:			
	• A user-friendly interface displays search results, query suggestions, filters, and other			
	interactive features. This UT is critical for effective search experience, as it influences now			
	interactive features. This UI is critical for effective search experience, as it influences how users interact with results and perceive relevance.			
	users interact with results and perceive relevance.			
	*			
inform	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of lation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements			
inform	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations:			
inform	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of lation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements			
inform 1. Scal •	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth.			
inform 1. Scal •	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge : Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution : Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are			
inform 1. Scal •	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth.			
inform 1. Scal •	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of the interval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge : Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution : Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval			
inform 1. Scal •	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge : Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution : Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge : Retrieving relevant documents quickly from a large dataset can lead to high latency.			
inform 1. Scal 2. Spe •	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of intion retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and			
inform 1. Scal 2. Spe •	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience.			
inform 1. Scal 2. Spe •	users interact with results and perceive relevance. Isst amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results			
inform 1. Scal 2. Spe •	users interact with results and perceive relevance. Isst amount of information available on the web significantly impacts the implementation and effectiveness of ination retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge : Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution : Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge : Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution : Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results Challenge : Large-scale data leads to diverse content, making it challenging to retrieve only the most relevant results.			
inform 1. Scal 2. Spe •	users interact with results and perceive relevance. Ist amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results Challenge: Large-scale data leads to diverse content, making it challenging to retrieve only the most relevant results. Solution: Advanced ranking algorithms, personalized search, and user behavior analysis can help IR systems			
inform 1. Scal 2. Spec 3. Rele	users interact with results and perceive relevance. Isst amount of information available on the web significantly impacts the implementation and effectiveness of nation retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results Challenge: Large-scale data leads to diverse content, making it challenging to retrieve only the most relevant results. Solution: Advanced ranking algorithms, personalized search, and user behavior analysis can help IR systems surface more relevant results.			
inform 1. Scal 2. Spec 3. Rele	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of intervention retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results Challenge: Large-scale data leads to diverse content, making it challenging to retrieve only the most relevant results. Solution: Advanced ranking algorithms, personalized search, and user behavior analysis can help IR systems surface more relevant results. dling Data Diversity and Quality			
inform 1. Scal 2. Spe 3. Rele 4. Han	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of intervention and effectiveness of intervention. Installity and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results Challenge: Large-scale data leads to diverse content, making it challenging to retrieve only the most relevant results. Solution: Advanced ranking algorithms, personalized search, and user behavior analysis can help IR systems surface more relevant results. dling Data Diversity and Quality Challenge: Web content varies widely in language, structure, quality, and relevance.			
inform 1. Scal 2. Spe 3. Rele 4. Han	users interact with results and perceive relevance. Inst amount of information available on the web significantly impacts the implementation and effectiveness of intervention retrieval (IR) systems. Here are the key challenges and considerations: ability and Storage Requirements Challenge: Web data is constantly growing, so IR systems must handle and store vast amounts of information. Solution: Efficient indexing, distributed storage systems, and scalable infrastructure (e.g., cloud storage) are required to manage this growth. ed and Latency in Retrieval Challenge: Retrieving relevant documents quickly from a large dataset can lead to high latency. Solution: Optimized indexing (e.g., inverted indexes) and caching are essential to reduce response times and improve user experience. evance and Precision of Results Challenge: Large-scale data leads to diverse content, making it challenging to retrieve only the most relevant results. Solution: Advanced ranking algorithms, personalized search, and user behavior analysis can help IR systems surface more relevant results. dling Data Diversity and Quality			

