		ISTITUTE OF OLOGY		USN								CARVERN	
				Internal As	sessment Test	– II	2024	4					
Su	b:	Mathematics	s for Compute	er Science						Code	BCS	BCS301	
Da	ate:	13/12/24	Duration:	90 mins	Max Marks:	50		Sem :	3	Branch			E /
			A	nswer Any 5	Questions.	-					Marks	OB C O 6	E R B T
1	as a a La	lyze and interp result of exper tin-Square desi C-25 A-19 B-19 D-17 en: F(3, 6) = 4.7	iment conduct gn.	-	-	-		-	C and 20 8 20			C 0 6	L3
2		up an analysis uction data of			e following tw Varieties of		y de	sign res	sults:	per acre	e [10]	C O	L2
		Varieties fertilizer		А	В			С				5	
		W		6	5			5					
		X Y		7 3	5			4		_			
		Z		8	7			4					
	[Giv	state whether en: F(3, 6)=4.	76 & F(6, 2)=1	nces are sign [9.33]	nificant at 5%								
3	San Citi	sample of 60 pple of 900 mo es are signific t at 5% signifi	en from anoth antly differer	ner city, 450 nt with resp) are smokers ect to the hab	. Do t	he in	ndicate	that	the	[10]	C O 3	L3
4	a) T 53, at 5 b) I Nor	The nine items 51. Does the r % significanc Let the observer mal Distribut 6 confidence i	of a sample i mean of these e level? [Giv ed value of the ion with mean	have the following the following the following the following the mean \overline{X} of the mean	llowing value ificantly from 1 for d.f = 8 of of a random s iance $\sigma^2 = 80$	n the a & 5% ample be 81	I.o. of s .2. 1	med me s] size 30 Find a 9	ean o from 90% a	f 47.5 a and a	[5+5]	C O 3	L3
5	Stat stan pop	e Central Lim dard deviation ulation. Find t iven: Z(-1.67	it Theorem . n of 15. Samp the probabilit	An unknow ole of size n y that the sa	n distribution =25 are draw ample mean l	n has 1 'n ranc	nea lom	n of 90 ly from	and and a the	a	[10]	C O 4	L3
6	A sa 220 and whi	ample analysis students had 20 had secure ch is in ratio 4 i-square test	s of the exam failed, 170 ha ed first class. 1:3:2:1 for the	ination of 5 ad secured t Do the figu respective	00 students v hird class, 90 res support tl categories	had s	ecu	red sec	ond c	lass	[10]	C O 4	L3

0.		0	. 10.	1 0.20						
Q1.	625	62	3 A20	P.c						
	Aig	D19	C21	1518						
			Dir							
	Din	(21	2 B21							
Ву	By waing mithod subtract 20 from an values to simplify calculations.									
			1	2	3	4	Ti	Ti2		
	1		4	B.3	410	<u>р</u> ь	ð	0.7		
	2		A-1	D-1	C	B-2	-2			
	3		B-1	A-6	D-3	Co	10	100		
	4		D-3	(03	B,	A-5	-7 1-12	49		
	Tj		0	<u>208-4</u>	-1	-7	1-12			
	T: 2		0	\$164	1	49				
Cor	rection	Jac	tor ((,f =	T2	= (-12) 2	= 144=9		
		0			N			16		
155	5 = 5	X12	- CF =	- 122	-9=	. 113				
SCI	R =]	72 -	. (IF =	64 +	4 +	100	+ 99 -	9		
160	V	1.		Ŧ	4	4	4			
		1		16+1	125.	1 12.	25-9			
			-		.25					
551	= T1	2_1	E = D			1 49	- 9~			
	ni		F = Q	H	Fr	t A	anna an franna			
			- 0 1	<i>1 L</i> O	201	12 2	r 9 -	7.E		
			- 0.7	4 T D	~ 1 -1	12.2	5-9=			
Stand and a stand with the stand of the										

Treatments Bbj-1 02	1-2 02	1-3 8	lý -4	-12
A -1	3		-12	-9
6 -1 C 5	0		-12	7
D -3	-1 0	6 [-3	-1
	<u>b</u> <u>b</u> <u>b</u>	AND DE CO	The second	
$SSL = \frac{Tv^2}{nv} - CF = \frac{10}{nv}$	14 + 4 +	36-1	1-9-9	
Nu	4	-1 91	17.75 -0	18.5
= 36	-1 0.25	4 14	12.25 =	
SSE - TSS-(SSC+SS	R+SSL	_)		
= 133-(7.5+				
- ()) ())	(for all			
			=10.75	
d P lor source X-1=	2		-10.15	
df for nous = r-1=			-10-15	
df for columns = C-	1 = 3		-10-15	
df for columns = C- df for varicties = V	= 3 -1 = 3			
df for columns = C- df for varicties = V	= 3 -1 = 3	-2) =		
df for columns = C- df for varicties = V df for residuals =	= 3 -1 = 3 ((-1) (K:	-2) =		
df for columns = C- df for varicties = V df for residuals = df for total = n-1=	= 3 -1 = 3 ((-1) (K:	-2) =		
df for columns = C- df for varicties = V df for residuals = df for total = n-1= AMOVA Table:	1 = 3 -1 = 3 (c-1)(x-15)		6	f-fatio
df for columns = C- df for varicties = V df for residuals = df for total = n-1= AMOVA Table: Source of Variation	1 = 3 -1 = 3 (c-1) (κ - 15 - 55	df	6 MSS	f-latio B-85
df for columns = C- df for varicties = V df for residuals = df for total = n-1= AMOVA Table: Bound of Variation Rows	1 = 3 -1 = 3 (c-1)(x-15)		6 MSS 15.50	8.85
df for columns = C- df for varicties = V df for residuals = df for residuals = df for total = N-1= AMOVA Table: Bound of Variation Rours Varieties/Treatments	1 = 3 -1 = 3 (c-1)(x) -15 55 46.50 7.50 48.50	df 3	6 MSS	0
df for columns = C- df for varicties = V df for residuals = df for total = N-1= AMOVA Table: Bound of Variation Rows Columns	1 = 3 -1 = 3 (c-1)(x) -15 55 46.50 7.50 48.50	df 3 3	6 MSS 15.50 2.50	8.85

iment No. Conclusion:- Variance between Rows (FR= 8.85) and varieties (FV=9.29) are significant (F7 4.76), Variance between columns (Fc = 1.43) i not sognificant (F.< 4 kow effecte & variety effects enfluence yeild but when affecte do not. Varicties R2. B C Row total 5 5 16 5 4 3 3 20 alune 24 total Null hypothiesis Ho: The man peroduction for the three wheat varieties does not differ. He He mean peroduction for the four plats doer not differ. $CF = F^2 = 60^2 = 300$ $ISS = \frac{12}{5} \times \frac{12}{12} - CF = 6^2 + 5^2 + 5^2 + 7^2 + 5^2 - 14^2 + 5^2 + 5^2 + 7^2 + 5^2 - 14^2 + 5^2 + 5^2 + 7^2 + 5^2$ 32

	F_	16-1	162, 9	$\frac{19^{2}-301}{3}$
				1. S. O. L.
· · · · · · · · · · · · · · · · · · ·	311	3-300	= 18	
$SC = \frac{2}{J} \frac{Tj^2}{nj} - CF$	1	24 ² =	$+\frac{20^{2}}{1}+\frac{1}{1}$	$\frac{6^2}{4} = 300$
SE= TSS-(SSF				195 /
	, 23	() =	22-118	+0) > 0
NOVA Table:-	•	1	1	
Source	SS	df	MCC	f-vatio)
Rours (Blots)	18	3	18/3 = 6	
Columns (varieties)	8	2	812 = 4	4/1 - 1
Ellor	6	6	6/1 = 1	11 24
Total		ĨI	6/6 = 1	
	Sec. 1	()]		
adura				
nclusion:-				
for columns:-	Fc =	6.98	75.14. Re	ject Ho. The
wheat varies eng	nifi	cant	4.	

(13) Null Ho: Proposition of smokers in the two vilies is the same (P1 = P2) H1: The proposition of invokers in the 2 cities is different (P1 = P2)

Given: $n_1 = 600 \quad n_1 = 450$ $p_1 = 600 \quad n_1 = 450 = 0.75$ $n_1 = \frac{150}{n_1} = \frac{150}{500} = 0.75$

n2 = 900 n2=450 $p_{2}^{2} = \frac{n_{2}}{n_{2}} = \frac{450}{900} = 0.5$ $P = \frac{2(1+2)}{n_1+n_2} = \frac{450+450}{600+900} = \frac{900}{1500} = 0.6$ 9=1-p=1-0.6=0.4 2-tast for difference of propositions: Di- Nz p.q. (1+1) 9.69 0.75-0.5 0.6x0.4x(1 1 1 600 900, 1.96 .- null hypothesis 2= 9.697 is sejected. $Q_{4.a}H_{0} = H = 4.75$ $H_{1.a}H_{0} = H = 4.75$ 1 = 4. 47+50+52+48 112 = 49. $\left[\leq (\alpha_i - \bar{\chi})^2 \right]$

$$\delta = \sqrt{\frac{54.85}{9.1}} = \sqrt{\frac{54.85}{8}} = \sqrt{6.86} \approx 2.62$$

$$t = \frac{x}{3} - \frac{4.6}{3} = \frac{49.11 - 47.5}{2.62/\sqrt{9}} = \frac{1.61}{2.62/3}$$

$$= \frac{1.61}{0.37} \approx 1.85$$

$$dt = n - 1 = 9 - 1 = 8$$

$$It 1 = 1.85 \leq 2.31, \text{ we fail to seject two mult hypothesis.}$$

$$64.6) \text{ Given } \overline{y} = 812$$

$$n = 30 \quad \sigma^{2} = 80 \quad \sigma = \sqrt{80} = 8.94$$

$$lonfidence - genterial = \overline{x} \pm 2.5 \frac{1}{\sqrt{n}}$$

$$\frac{\sqrt{n}}{\sqrt{n}} = \frac{8.94}{\sqrt{30}} \approx \frac{8.94}{5.477} \approx 1.63$$

$$for 90\% \quad lonfidence genterial (2 = 1.645)$$

$$(I = 81.2 \pm (1.645 \times 1.63) = (18.52, 83.85)/(12 = 81.2 \pm (1.96 + 1.65)) = (18.00, 84.40)/(12 = 81.2 \pm (1.96 + 1.95))$$

Page No.: eriment No. Central Limit Theorem: Let X, X2,-RS. Xn le a random sample of size n tion with drawn flom a popul man y and varian Sample size a leunes la Sampling distribution of the cample mean & approaches a normal distribution will mean y & variance o 2/4 regardless of the shape of the oliginal population distribution. X~N/M, 5²) for large n Giveni- 1=90, 5=15, n=25 $\tilde{X} \sim N \left[u = 90, \sigma^2 = 15 \right] = \frac{1}{N} = \frac{1}{\sqrt{25}} = \frac{1}{\sqrt{25}}$ $2 = \frac{\overline{\chi} - U}{\overline{\Sigma} / \overline{W}}$ for $\bar{X} = 8$ $\bar{X} = 85:$ I = 85-90 = -1.67Z2 = 92-90 = 0.67 P(85 < x < 92), P(-1.67 220.6 P(-1.67<720)+ P(02220.67) D-4514+D-2454 = D-6965

x lies pl8:	5< x <	92) =	0.6965	1						
Given: N=										
4+3+2+1=10 Failed: <u>4</u> × (00 = 200										
										3rd Class =
2nd Class =	2nd Class = 2 x 500 = 100									
Ist Class =	10 x 5	00 = 50								
Catigory $O \in (O-E)^2$										
failed	220	200	400							
3rd Class	170	150	400	15						
2nd class	90	100	100							
Ist Class	20	50	900	hard and						
	AL MALE		AND AND A STATE	-						

 $= \leq (0i - E_i)^2$ Ej 4000 + 1000 + 100 + 900 200 \$150 100 50 2+2-67+1+18 22.67 df = 4 - 1 = 3X²= 23.67 > 7.81, we reject the null hypo - figures do not support the examination Mult sato.