

USN

 Internal Assessment Test 2 – DEC 2024

Sub: INFORMATION RETRIEVAL Sub Code: BAI515B Branch: AIML

Date: 13 / 12/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: V / A,B,C OBE

Answer Any of 5 Questions MARKS CO RBT

 1 Explain Aho-Corasick Algorithm for Pattern Searching.
Build a Trie (or Keyword Tree) of all words.
Input: text = "ahishers" arr[] = {"he", "she", "hers", "his"}

[10] CO4 L3

 2 (a) Explain index compression with an example. [05] CO5 L2

 (b) Given a string s and string t, Apply Boyer-Moore algorithm to remove all occurrences of a
string t in a string s
Input: s = “ababaababa”, t = “aba”

[05] CO4 L3

3 Given a text txt[0..n-1] and a pattern pat[0..m-1] where n is the length of the text and m is
the length of the pattern, Make use of a function pattern search(char pat[], char txt[]) that
write all occurrences of pat[] in txt[].
 Input: txt[] = “THIS IS A TEST TEXT” pat[] = “TEST”.

[10] CO4 L3

4 Explain Multidimensional indexing with Suitable Example [10] CO4 L2

5. Briefly explain about
1.search engine optimization.
2.A vector space model for XML retrieval

[10] CO5 L2

6 How to build a Suffix Tree for a given text? “banana\0” where ‘\0’ is the string termination
character.How to search a pattern in the built suffix tree

[10] CO4 L3

CI CCI HOD-AIML

USN

 Internal Assessment Test 2 – DEC 2024

Sub: INFORMATION RETRIEVAL Sub Code: BAI515B Branch: AIML

Date: 13 / 12/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: V / A,B,C OBE

Answer Any of 5 Questions MARKS CO RBT

 1 Explain Aho-Corasick Algorithm for Pattern Searching.
Build a Trie (or Keyword Tree) of all words.
Input: text = "ahishers" arr[] = {"he", "she", "hers", "his"}

[10] CO4 L3

 2 (a) Explain index compression with an example. [05] CO5 L2

 (b) Given a string s and string t, Apply Boyer-Moore algorithm to remove all occurrences of a
string t in a string s
Input: s = “ababaababa”, t = “aba”

[05] CO4 L3

3 Given a text txt[0..n-1] and a pattern pat[0..m-1] where n is the length of the text and m is
the length of the pattern, Make use of a function pattern search(char pat[], char txt[]) that
write all occurrences of pat[] in txt[].
 Input: txt[] = “THIS IS A TEST TEXT” pat[] = “TEST”.

[10] CO4 L3

4 Explain Multidimensional indexing with Suitable Example [10] CO4 L2

5 Briefly explain about
1.search engine optimization.
2.A vector space model for XML retrieval

[10] CO5 L2

6 How to build a Suffix Tree for a given text? “banana\0” where ‘\0’ is the string termination
character.How to search a pattern in the built suffix tree

[10] CO4 L3

CI CCI HOD-AIML

USN

 Internal Assessment Test 2 – DEC 2024

Sub: INFORMATION RETRIEVAL Sub Code: BAI515B Branch: AIML

Date: 13 / 12/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: V / A,B,C OBE

Answer Any of 5 Questions MARKS CO RBT

 1 Explain Aho-Corasick Algorithm for Pattern Searching.
Build a Trie (or Keyword Tree) of all words.
Input: text = "ahishers" arr[] = {"he", "she", "hers", "his"}
Definition-4

Drawing- 4
Explanation-2

[10] CO4 L3

 2 (a) Explain index compression with an example.
Definition-4
Explanation-1

[05] CO5 L2

 (b) Given a string s and string t, Apply Boyer-Moore algorithm to remove all occurrences of a
string t in a string s
Input: s = “ababaababa”, t = “aba”

Definition-4
Explanation-1

[05] CO4 L3

3 Given a text txt[0..n-1] and a pattern pat[0..m-1] where n is the length of the text and m is
the length of the pattern, Make use of a function pattern search(char pat[], char txt[]) that
write all occurrences of pat[] in txt[].
 Input: txt[] = “THIS IS A TEST TEXT” pat[] = “TEST”.
Definition-4
Drawing- 4

Explanation-2

[10] CO4 L3

4 Explain Multidimensional indexing with Suitable Example
Definition-4

Drawing- 4

Explanation-2

[10] CO4 L2

5. Briefly explain about
1.search engine optimization.
2.A vector space model for XML retrieval
Definition-4

Drawing- 4
Explanation-2

[10] CO5 L2

6 How to build a Suffix Tree for a given text? “banana\0” where ‘\0’ is the string termination
character.How to search a pattern in the built suffix tree
Definition-4
Drawing- 4

Explanation-2

[10] CO4 L3

CI CCI HOD-AIML

USN

 Internal Assessment Test 2 – Dec 2024

Sub
:

INFORMATION RETRIEVAL
Sub
Code:

BAI515B Branch: AIML

Dat
e:

13 / 12/2024 DuraƟon: 90 mins Max Marks: 50
Sem /
Sec:

V / A, B, C OBE

Answer Any of 5 QuesƟons

M
A
R
KS

CO RB
T

1.

Explain Aho-Corasick Algorithm for PaƩern Searching.

Build a Trie (or Keyword Tree) of all words.

Input text: “ahishers” arr = {“he”, she, “hers”, “his”}

-Aho-Corasick algorithm is an extension of the KMP algorithm and is specifically designed to
efficiently search for mulƟple paƩerns in a text.
-It is capable of handling a set of paƩerns simulatenously.
-Aho-Corasick Algorithm employs a Trie-like data structure to represent the set of paƩerns and
employs a more general set of failure transiƟons.
-When a mismatch occurs during the paƩern matching process, instead of restarƟng from the
beginning,
Aho-Corasick uƟlizes the failure transiƟons to quickly jump to the longest proper suffix of the
currently matched prefix.

[10] CO1 L2

 2 (a) Explain Index Compression with an Example.

Index Compression

Index compression is a technique used in informaƟon retrieval systems to reduce the size of an
index while maintaining its efficiency for searching. Large-scale search engines and databases
generate massive indexes to map words to documents or locaƟons in text, and compressing these
indexes is crucial to save storage space and improve query performance.

Compression techniques are applied to both inverted indexes (used for storing posƟngs lists) and
forward indexes. The aim of index compression is to:

1. Minimize storage requirements.

2. Reduce disk I/O latency for faster access.

3. Improve search performance by reducing the index size.

Index Compression Techniques

1. Vocabulary Compression

The vocabulary in an inverted index contains unique terms (words) that appear in the text corpus.
Since natural language has redundancy, compressing vocabulary terms reduces space.
Techniques include:

 Truncated Coding: Use shorter codes for common words.

 DicƟonary Encoding: Store the vocabulary in sorted order and use relaƟve storage for
similar words.

2. PosƟngs List Compression

The posƟngs list stores document IDs (and posiƟons) where a term appears. These lists can be
very large and need compression.
Techniques include:

 Gap Encoding: Instead of storing absolute document IDs, store differences (gaps) between
consecuƟve document IDs.

 Variable-Length Encoding: Encode gaps using fewer bits for smaller numbers.

 Bit-Level Encoding: Compress each integer to use minimal bits (e.g., Elias Gamma
Encoding, Golomb Coding).

Example:

Consider the following documents:

 Doc 1: "The cat sat on the mat."

 Doc 2: "The cat ate a rat."

Step 1: Build the Inverted Index

[05] CO2 L2

The inverted index maps terms to the list of document IDs where they appear:

Step 2: Apply Gap Encoding

Instead of storing absolute document IDs, we store gaps (differences) between consecuƟve IDs:

 2 (b) Boyer-Moore Algorithm to Remove All Occurrences of a PaƩern

The Boyer-Moore Algorithm is an efficient string-matching algorithm that uses two heurisƟcs:

1. Bad Character HeurisƟc

2. Good Suffix HeurisƟc

It preprocesses the paƩern to speed up the searching phase and skips unnecessary comparisons
by aligning the paƩern smartly against the text.

Problem Statement

Given:

 Text t = "abababab"

 PaƩern s = "aba"

We need to remove all occurrences of the paƩern from the text using the Boyer-Moore algorithm.

Key Steps

1. Preprocessing: Build the bad character table for the paƩern.

2. Search Phase: Use the bad character heurisƟc to efficiently search for the paƩern in the
text and find all matches.

3. Post Processing: Remove all matches (occurrences of the paƩern) from the text.

Step 1: Preprocessing - Bad Character HeurisƟc

The bad character heurisƟc shiŌs the paƩern when a mismatch occurs. A table is constructed to
store the last occurrence of every character in the paƩern.

For the given paƩern s = "aba":

 Build the bad character table as follows:

Character Last Occurrence (Index)

a 2

b 1

 If a mismatch occurs at a character, we check the bad character table to determine how
far to shiŌ the paƩern.

Step 2: Search Phase - PaƩern Search in the Text

[05] CO2 L2

We slide the paƩern s over the text t and compare characters from right to leŌ. If there is a
mismatch, we use the bad character heurisƟc to shiŌ the paƩern.

IniƟalize:

 n = 8 → Length of text t = "abababab"

 m = 3 → Length of paƩern s = "aba"

Procedure:

1. Align the paƩern at the start of the text. Compare characters from right to leŌ.

2. If a mismatch occurs, use the bad character heurisƟc to determine the shiŌ.

3. If the paƩern matches completely, record the posiƟon and conƟnue searching further
down the text.

4. Repeat unƟl the enƟre text is processed.

Example ExecuƟon

Text: t = "abababab"
PaƩern: s = "aba"

IniƟal Alignment:

Text: a b a b a b a b

PaƩern: a b a

1. Compare from right to leŌ:

o t[2] = a matches s[2] = a

o t[1] = b matches s[1] = b

o t[0] = a matches s[0] = a

Match found at index 0.

o Record the match posiƟon.

o ShiŌ the paƩern to conƟnue searching.

ShiŌ PaƩern to Index 2:

Text: a b a b a b a b

PaƩern: a b a

2. Compare from right to leŌ:

o t[4] = a matches s[2] = a

o t[3] = b matches s[1] = b

o t[2] = a matches s[0] = a

Match found at index 2.

o Record the match posiƟon.

o ShiŌ the paƩern further.

ShiŌ PaƩern to Index 4:

Text: a b a b a b a b

PaƩern: a b a

3. Compare from right to leŌ:

o t[6] = a matches s[2] = a

o t[5] = b matches s[1] = b

o t[4] = a matches s[0] = a

Match found at index 4.

o Record the match posiƟon.

o ShiŌ the paƩern further.

ShiŌ PaƩern to Index 6:

Text: a b a b a b

PaƩern: a b a

4. Compare from right to leŌ:

o t[6] = a matches s[2] = a

o t[7] = b → Mismatch occurs.

Use the bad character heurisƟc to shiŌ the paƩern. Since b is at index 1 in the bad character table,
shiŌ the paƩern to align with the next possible posiƟon.

Final Matches

The paƩern s = "aba" is found at posiƟons 0, 2, and 4 in the text t.

Step 3: Remove All Occurrences

AŌer idenƟfying all posiƟons where the paƩern occurs (0, 2, and 4), remove the paƩern aba from
these posiƟons.

Original Text: abababab

AŌer Removal:

 Remove aba starƟng at index 0 → Remaining text: bababab

 Remove aba starƟng at index 2 → Remaining text: bab

Final Result:

Resultant Text: "b"

3 Given a text txt[0..n-1] and a paƩern pat[0..m-1] where n is the length of the text and m is the
length of the paƩern, write a funcƟon search(char pat[],char txt[]) that prints all occurrences of
pat[] in txt[].

Input: txt[] = “THIS IS A TEST TEXT”
pat[] = “TEST”

BadChar Table:-

T 3

E 1

S 2

*Start aligning pat with txt:-
 -Compare pat[3] with the corresponding text character.
 -On mismatch, shiŌ the paƩern based on the Bad Character HeurisƟc

M = 4
N = 19

"THIS IS A TEST TEXT"
"TEST" Mismatch on 'S' [Move (M-1)-2 = 1 Space]

"THIS IS A TEST TEXT"
 "TEST" Mismatch on 'I' (Move (M) = 4 Spaces)

"THIS IS A TEST TEXT"
 "TEST" Mismatch on ' ' (Move (M) = 4 Spaces)

"THIS IS A TEST TEXT"
 "TEST" Matches, move one space over

"THIS IS A TEST TEXT"
 "TEST" Mismatch on ' ' (Move (M) = 4 Spaces)

"THIS IS A TEST TEXT"
 "TEST" Mismatch on 'X ' (Move (M) = 4 Spaces)

END

PaƩern pat found once in the given string txt.

me set]

[10] CO2 L3

4

(a)

Briefly explain about:

Search engine opƟmizaƟon

SEO stands for search engine opƟmizaƟon. Let’s break that down in the context of your website.

 Search: What people do when they want to find an answer to a quesƟon or a product or
service that meets their needs.

 Search engine: A site (like Google or Bing) where a person can perform said search.

 Search engine opƟmizaƟon: What you do to get said search engine to connect said search
with your site.

A formal definiƟon of SEO:

Search engine opƟmizaƟon is a set of technical and content pracƟces aimed at aligning a website
page with a search engine’s ranking algorithm so it can be easily found, crawled, indexed, and
surfaced in the SERP for relevant queries.

A simpler definiƟon of SEO:

SEO is about making improvements to your website’s structure and content so its pages can be
discovered by people searching for what you have to offer, through search engines.

The simplest definiƟon of SEO:

SEO is what you do to rank higher on Google and get more traffic to your site.

Yes, Google is just one search engine of many. There’s Bing. Directory search engines. Even
Instagram is a search engine. But capturing 92% of the market share, the terms “Google” and
“search engine” are synonymous for the intents and purposes of this post.

Benefits & importance of SEO

People are searching for any manner of things both loosely and directly related to your business.
These are all opportuniƟes to connect with these people, answer their quesƟons, solve their
problems, and become a trusted resource for them.

 More website traffic: When your site is opƟmized for search engines, it gets more
traffic which equates to increased brand awareness, as well as…

 More customers: To get your site opƟmized, it has to target keywords—the terms your
ideal customers/visitors are searching—meaning you’ll get more relevant traffic.

 BeƩer reputaƟon: Ranking higher on Google builds instant credibility for your business. If
Google trusts you, then people trust you.

 Higher ROI: You put money into your website, and into the markeƟng campaigns that lead
back to your website pages. A top-performing site improves the fruits of those campaigns,
making your investment worth it.

How does SEO work?

[05] CO3 L2

So how does Google determine which pages to surface in the search engine results page (SERP)
for any given query? How does this translate into traffic to your website? Let’s take a look at how
SEO works.

 Google’s search crawlers constantly scan the web, gathering, categorizing, and storing the
billions of web pages out there in its index. When you search for something and Google
pulls up results, it’s pulling from its index, not the web itself.

 Google uses a complex formula (called an algorithm) to order results based on a number
of criteria (ranking factors—which we’ll get into next) including the quality of the content,
its relevance to the search query, the website (domain) it belongs to, and more.

 How people interact with results then further indicates to Google the needs that each
page is (or isn’t) saƟsfying, which also gets factored into the algorithm.

 4 (b) Vector space model for XML retrieval

[05] CO2 L3

5. How to build a Suffix Tree for a given text? "banana\0" where \0 is the string terminaƟon
character. How to search a paƩern in the built Suffix Tree?

In InformaƟon Retrieval (IR), text compression techniques are essenƟal for reducing storage
requirements and improving retrieval efficiency. Text compression can be divided into two main
categories: lossless and lossy compression. Lossless compression maintains the exact original text,
while lossy compression allows some informaƟon to be discarded to achieve higher compression.
Below are the primary types of text compression techniques used in IR:

 Document Data is

Suffix Tree For above data with the suffix words are as follows

[10] CO3 L2

6

A

Explain MulƟdimensional Indexing with Suitable Example.

[10]

CO3

L3

