
ADVANCED AI AND ML(21AI71)
Internal Assessment Test 2

1. Derive the gradient descent rule. Differentiate between gradient descent and stochastic
gradient descent. (6+4)

The key differences between standard gradient descent and stochastic gradient descent
are:

● In standard gradient descent, the error is summed over all examples before
updating weights, whereas in stochastic gradient descent weights are updated
upon examining each training example.

● Summing over multiple examples in standard gradient descent requires more
computation per weight update step. On the other hand, because it uses the true
gradient, standard gradient descent is often used with a larger step size per weight
update than stochastic gradient descent.

● In cases where there are multiple local minima with respect to E($, stochastic
gradient descent can sometimes avoid falling into these local minima because it
uses the various VEd(G) rather than VE(6) to guide its search.

2. Explain a genetic algorithm with a prototypical genetic algorithm. Explain the different
genetic operators present in it. (6+4)

Typical GA operators for manipulating bit string hypotheses. These operators correspond to
idealized versions of the genetic operations found in biological evolution. The two most common
operators are crossover and mutation. The crossover operator produces two new offspring from
two parent strings, by copying selected bits from each parent. The bit at position i in each
offspring is copied from the bit at position i in one of the two parents. The choice of which

parent contributes the bit for position i is determined by an additional string called the crossover
mask. In two-point crossover, offspring are created by substituting intermediate segments of one
parent into the middle of the second parent string. Uniform crossover combines bits sampled
uniformly from the two parents. of two parents, a second type of operator produces offspring
from a single parent. In particular, the mutation operator produces small random changes to the
bit string by choosing a single bit at random, then changing its value.

3. Explain the K-nearest neighbour (K-NN) algorithm. Highlight the differences between it
KNN and the distance-weighted K-nearest neighbour algorithm. (5+5)

Basic Concept:

● K-NN:
○ In the standard K-NN algorithm, all the KKK nearest neighbors contribute equally

to the prediction, regardless of their distance from the query point.
● Distance-Weighted K-NN:

○ In DW-KNN, closer neighbors have a higher influence on the prediction
compared to farther ones. This weighting is based on the distance between the
query point and the neighbors.

2. Weight Assignment:

● K-NN:
○ No weighting is applied. All KKK neighbors are treated equally. Each neighbor

gets a weight of 1.
● DW-KNN:

○ Neighbors are weighted inversely proportional to their distance from the query
point. For example, a common weighting function is: wi=1d(x,xi)+ϵw_i =
\frac{1}{d(x, x_i) + \epsilon}wi​=d(x,xi​)+ϵ1​where d(x,xi)d(x, x_i)d(x,xi​) is the
distance between the query point xxx and neighbor xix_ixi​, and ϵ\epsilonϵ is a
small constant to avoid division by zero.

3. Prediction:

● K-NN:
○ Classification: The class label is determined by majority voting among the KKK

neighbors.
○ Regression: The prediction is the mean (or sometimes median) of the target values

of the KKK neighbors.

● DW-KNN:
○ Classification: The class label is determined by weighted voting, where the

weights are inversely proportional to the distance.
○ Regression: The prediction is a weighted average of the target values, with

weights determined by the distance.

4. Sensitivity to Distance:

● K-NN:
○ Less sensitive to the actual distances since all neighbors have equal influence.

● DW-KNN:
○ More sensitive to the distance, giving more importance to closer neighbors, which

often leads to improved accuracy, especially in scenarios where closer points are
more relevant.

5. Use Cases:

● K-NN:
○ Works well in scenarios where the relevance of neighbors does not vary much

with distance.
● DW-KNN:

○ More effective when nearby data points are more likely to belong to the same
class or have similar output values, such as in non-uniformly distributed datasets.

6. Performance:

● K-NN:
○ Simpler and computationally less intensive since it doesn't compute weights for

neighbors.
● DW-KNN:

○ Slightly more computationally intensive due to the need for calculating weights,
but often yields better performance in terms of accuracy.

4. Explain the rule used to find the combination of items frequently bought.
Explain the metrics used to calculate the frequent item set referring to Example: {Milk,
Diaper}->{Beer}. (6+4)

Association rule finds combinations of items that frequently occur together in orders or baskets
(in a retail context). The items that frequently occur together are called itemsets. Itemsets help to
discover relationships between items that people buy together and use that as a basis for creating
strategies like combining products as combo offer or place products next to each other in retail
shelves to attract customer attention. An application of association rule mining is in Market
Basket
Analysis (MBA). MBA is a technique used mostly by retailers to find associations between items
purchased by customers.
Association rule considers all possible combination of items in the previous baskets and
computes various measures such as support, confidence, and lift to identify rules with stronger
associations.

Metrics
Support indicates the frequencies of items appearing together in baskets with respect to all
possible baskets being considered (or in a sample). Assume that X and Y are items being
considered. Let

s= ({Milk, Diaper, Beer}) \div |T|
= 2/5
= 0.4

c= s(Milk, Diaper, Beer) /s(Milk, Diaper)
= 2/3
= 0.67

l= Supp({Milk, Diaper, Beer}) /(Supp({Milk, Diaper})*Supp({Beer}))
= 0.4/(0.6*0.6)
= 1.11

5. Explain the different types of collaborative filtering with an example and the challenges
associated with it. (4+4+2)

Collaborative filtering is based on the notion of similarity
Collaborative filtering comes in two variations:
1. User-Based Similarity: Finds K similar users based on common items they have bought.
2. Item-Based Similarity: Finds K similar items based on common users who have bought those
items.
User-Based Collaborative Filtering is a technique used to predict the items that a user might like
on the basis of ratings given to that item by other users who have similar taste with that of the
target user. Many websites use collaborative filtering for building their recommendation system.

● Calculating Cosine Similarity between Users
● Filtering Similar Users

Item-Based Similarity

If two movies, movie A and movie B, have been watched by several users and rated very
similarly, then movie A and movie B can be similar in taste. In other words, if a user watches
movie A, then he or she is very likely to watch B and vice versa.

● Calculating Cosine Similarity between Movies
● Finding Most Similar Movies

Finding user similarity does not work for new users. We need to wait until the new user buys a
few items and rates them. Only then users with similar preferences can be found and
recommendations can be made based on that. This is called cold start problem in recommender
systems. This can be overcome by using item-based similarity. Item-based similarity is based on
the notion that if two items have been bought by many users and rated similarly, then there must
be some inherent relationship between these two items. In other terms, in future, if a user buys
one of those two items, he or she will most likely buy the other one.

6. Explain the different steps in text preprocessing for sentiment analysis (Include relevant
code snippets where necessary). List the challenges. of text analytics. (8+2)
Text Pre-processing
Unlike structured data, features (independent variables) are not explicitly available in text data.
Thus, we need to use a process to extract features from the text data. One way is to consider each
word as a feature and find a measure to capture whether a word exists or does not exist in a
sentence. This is called the bag-of-words (BoW) model. That is, each sentence (comment on a
movie or a product) is treated as a bag of words. Each sentence (record) is called a document and
collection of all documents is called corpus.

● Bag-of-Words (BoW) Model
The first step in creating a BoW model is to create a dictionary of all the words used in
the corpus. At this stage, we will not worry about grammar and only occurrence of the
word is captured. Then we will convert each document to a vector that represents words
available in the document. There are three ways to identify the importance of words in a
BoW model:

1. Count Vector Model
2. Term Frequency Vector Model
3. Term Frequency-Inverse Document Frequency (TF-IDF) Model

● Count Vector Model
Consider the following two documents:
1. Document 1 (positive sentiment): I really really like IPL.
2. Document 2 (negative sentiment): I never like IPL.
Note: IPL stands for Indian Premier League.
The complete vocabulary set (aka dictionary) for the above two documents will
have words such as I, really, never, like, IPL. These words can be considered as
features (x1 through x5). For creating count vectors, we count the occurrence of
each word in the document as shown in Table 10.4. The y-column in Table 10.4

indicates the sentiment of the statement: 1 for positive and 0 for negative
sentiment.

● Term Frequency-Inverse Document Frequency (TF-IDF)
TF-IDF measures how important a word is to a document in the corpus.
The importance of a word (or token) increases proportionally to the
number of times a word appears in the document but is reduced by the
frequency of the word present in the corpus. TF-IDF for a word i in the
document is given by

● Creating Count Vectors for sentiment_train Dataset
Each document in the dataset needs to be transformed into TF or TF-IDF
vectors. sklearn.feature_ extraction.text module provides classes for
creating both TF and TF-IDF vectors from text data. We will use
CountVectorizer to create count vectors. In CountVectorizer, the

documents will be represented by the number of times each word appears
in the document.

● Removing Low-frequency Words
One of the challenges of dealing with text is the number of words or
features available in the corpus is too large. The number of features could
easily go over tens of thousands. Some words would be common words
and be present across most of the documents, while some words would be
rare and present only in very few documents.

● Removing Stop Words
sklearn.feature_extraction.text provides a list of pre-defined stop words in
English, which can be used as a reference to remove the stop words from
the dictionary, that is, feature set.

● Creating Count Vectors
All vectorizer classes take a list of stop words as a parameter and remove
the stop words while building the dictionary or feature set. And these
words will not appear in the count vectors representing the documents. We
will create new count vectors by passing the my_stop_words as stop
words list.

1. Stemming: This removes the differences between inflected
forms of a word to reduce each word to its root form. This
is done by mostly chopping off the end of words (suffix).
For instance, love or loved will be reduced to the root word
love. The root form of a word may not even be a real word.
For example, awesome and awesomeness will be stemmed
to awesom. One problem with stemming is that chopping of
words may result in words that are not part of vocabulary

2. Lemmatization: This takes the morphological analysis of
the words into consideration. It uses a language dictionary
(i.e., English dictionary) to convert the words to the root
word. For example, stemming would fail to differentiate
between man and men, while lemmatization can bring these
words to its original form man.

● Distribution of Words Across Different Sentiment
The words which have positive or negative meaning occur across
documents of different sentiments.This could give an initial idea of how
these words can be good features for predicting the sentiment of
documents. For example, let us consider the word awesome.

CHALLENGES OF TEXT ANALYTICS
● | Using n-Grams
● Build the Model Using n-Grams

