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1 | Explain the implementation of first order derivatives for image sharpening - The
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Explain Spatial Correlation and convolution. Perform correlation and

convolution on the following function:

f=0001101
w=824

(Add the padding required)
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(Note: Reverse result for Convolution)

What is Unsharp masking and Highboost filtering?
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Explain the mechanics of Linear Spatial Filtering?
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THE MECHANICS OF LINEAR SPATIAL FILTERING

. an image fanda
A linear spatial filter performs a sum-of-products ope.ranOIl betwesgorhoodgof opera-
filter kernel, w. The kernel is an array whose size defines tbe neig terms used to
tion, and whose coefficients determine the nature of th.e filter. Other i
refer to a spatial filter kernel are mask, template, and window. We use J
kernel or simply kernel. ) ) . 853 fe
Figure 3.28 illustrates the mechanics of linear spatial filtering using a - X3 KEr
nel. At any point (x, y) in the image, the response, g(x, y), of the filter 1s the sum of
products of the kernel coefficients and the image pixels encompassed by the kernel:

g(x,y)=w(-1,-1)f(x-1,y—-1) + w(-1,0)f(x = 1,y) + ...

+w(0,0)f(x,y) + ... + w(L,L1) f(x + 1,y + 1) e

As coordinates x and y are varied, the center of the kernel moves from
generating the filtered image, g, in the process.”

Observe that the center coefficient of the kernel, w(0,0), aligns with the pixel at
location (x, y). For a kernel of size m x n, we assume that m = 24 + | and n2 = 2p + |
where a and b are nonnegative integers. This means that our focys is on kernels of
odd size in both coordinate directions. In general, linear spatial filtering of an jma
of size M x N with a kernel of size m x n is given by the expression g¢

pixel to pixel,

a b
gx,y)=Y, Y ws,O)f(x+s,y+t) .
s=—at=-b =321 )
where x and y are varied so that the center (origin) of the kernel visitg eVery mio ;.
fonce. For a fixed value of (x, y), Eq. (3-31) implements the sum Ofprﬂdub-l Plxcl in
form shown in Eq. (3-30), but for a kernel of arbitrary odd size. As you Wil?tls of thc
the following section, this equation is a central tool in linear filtering_ €arn in
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Briefly explain the model of Image degradation and restoration with a neat
diagram.
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5.1 A MODEL OF THE IMAGE DEGRADATION/RESTORATION
PROCESS

In this chapter, we model image degradation as an operator # that, togclhcr\‘;m1
additive noise term, operates on an input image f(x,y)to pr{oducc a degradeq i
g(x.v) (sce Fig. 5.1). Given g(x,y), some knowledge about if anq some knowled;
about the additive noise term (x, y), the objective of restoration is to obtain 4 &
mate f(x.v) of the original image. We want the estimate to be as close as PO\-Sihi;
{o the original image and, in general, the more we know about # and », the (i,
_f(x._\') will be to f(x,y). o _

We will show in Section 5.5 that, if ¥ is a linear, position-invariant operator .
the degraded image is given in the spatial domain by

g(x,y)=(h* f)(x,y) + n(x,y)

where h(x,y) is the spatial representation of the degradation function. As in Chepies
3 and 4, the symbol “x” indicates convolution. It follows from the convolution theorr
that the equivalent of Eq. (5-1) in the frequency domain is

dh

Oe
4

G(u3v) = H(u,v)F(u,v) + N(u,v)

where the terms in capital letters are the Fourier transforms of the correspondii?
terms in Eq. (5-1). These two equations are the foundation for most of the resto

tion material in this chapter.

S—_—
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DEGRADATION RESTORATION

Ans:

deviation.

Briefly mention 3 important noise PDFs.

1. Gaussian Noise

The PDF of a Guassian random variable, z, is defined by the following
familiar expression:

1 2, 2
— —(z—p)" /20
p(z)= et
2no
‘ mean variance

Note: J.p(z)dz -1

-0

Where z represents intensity, z is the mean value of z, and o is its standard
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70% in [(u—o), (uto)]
95% in [(u—20), (ut20)]

Gaussian

2. Rayleigh Noise

The PDF is given by

2 ~(z - a)*/b

—(z-a)e z2a
p(z)=1b

l() Z-<'a

The mean and variance of z when this random variable is characterized

by a Rayleigh PDF are

Z=a+ Jwb/4

and
, b(4-m)

p(z)

0.607
Vb
Rayleigh

¥
s
]

a-+

3. Gamma Noise
The PDF of Erlang or Gamma noise is

b_b-1
az —az - > 0

p2)=1b - 1"
0
where the parameters are such that a>b, b is a positive integer, and

indicates factorial. The mean and variance of z are

z<0

66"7

b
a

and
b




p(z)

Erlang (Gamma)

a(b —1)b!
(b—1)!

e (b=1)

What are the ways to estimate the degradation function in image restoration? 10 cos3

Ans:
ESTIMATION BY IMAGE OBSERVATION

Suppose that we are given a degraded image without any knowledge about the degr,
dation function %. Based on the assumption that the image was degraded by afip
ear, position-invariant process, one way to estimate ¥ is to gather information gy
the image itself. For example, if the image is blurred, we can look at a small regy,
gular section of the image containing sample structures, like part of an object apg
the background. In order to reduce the effect of noise, we would look for an areain
which the signal content is strong (c.g..an area of high contrast). The next step would
be to process the subimage to arrive at a result that is as unblurred as possible.

Let the observed subimage be denoted by g, (x,y), and let the processed subimag
(yvhich in reality is our estimate of the original image in that area) be denoted by
f.(x,y). Then, assuming that the effect of noise is negligible because of our choice
a strong-signal area, it follows from Eq. (5-65) that

H (u,v) = G_ﬂ(ﬂl (3
Fy(u,v)
From the characteristics of this function, we then deduce the complete degradall®
function H(u,v) based on our assumption of position invariance. For examp]e,su;-
pose that a radial plot of H (u,v) has the approximate shape of a Gaussian cur®
can use that information to construct a function H (4, v) on a larger scale. but ha‘fij

the same basic shape. We then use H(u,v)i ; hes10*
: . . »V) In one of the r approac ’
discussed in the following sections, Clea estoration app Jv ¥

- rly, this is a laborious process us¢¢ ™)
very specific circumstances, such as restoring an old PhOtograpl}]) of hist orical yalue

ESTIMATION BY EXPERIMENTATION

If equipment similar to the equipmen; I
able, it is possible in principle to oh ac
Images similar to the degraded imag

W
. i 15
; quire the degraded 1mageradgnfs
'aIn an accurate estimate of the 4¢2° .
. b
© €an be acquired with various syst™ ‘




until they are degraded as closely as possible to the image we wish to restore. Then
the idea is to obtain the Impulse response of the degradation by imaging an impulse

space—ﬁnvan’an? system is characterized completely by its impulse response.
An impulse is simulated by a bright dot of light, as bright as possible to reduce the

.effect of .noise to negligible values. Then, recalling that the Fourier transform of an
impulse is a constant, it follows from Eq. (5-65) that

G(u,v)

H(u,v)= A

(3-67)
where, as before, G(u,v) is the Fourier transform of the observed image, and A is a
constant describing the strength of the impulse. Figure 5.24 shows an example.

ESTIMATION BY MODELING

Degradation modeling has been used for many years because of the insight it affords
into the image restoration problem. In some cases, the model can even take into
account environmental conditions that cause degradations. For example, a degrada-
tion model proposed by Hufnagel and Stanley [1964] is based on the physical char-
acteristics of atmospheric turbulence. This model has a familiar form:

e 2 2\5/6 ¢
H(u,v)=e ) (3-68)

where k is a constant that depends on the nature of the turbulence. With the excep-
tion of the 5/6 power in the exponenl,'this equatlon hﬂ.s the same t.orm as the Gauss-
ian lowpass filter transfer function discussed in Seo_::tmn .4.8. In fact, the Gaussian
LPF is used sometimes to model mild, uniform bllll:l‘mg. FlgurclS.ZS shows examples
obtained by simulating blurring an image using Eq. (5-68) with values & = 0.0025

(severe turbulence), k = 0.001 (mild turbulence), and k = 0.00025 (low turbulenc:)
We restore these images using various methods later in this chapter.

Another approach used frequently in modeling is to derive a mathematical m0d§1
starting from basic principles. We illustrate this procedure by treating in some detal
the case in which an image has been blurred by uniform linear motion betwe
the image and the sensor during image acquisition. Suppose that an image _f(__r._\' ‘
undergoes planar motion and that x,(t) and y,(t) are the time-varying compons™”
of motion in the x- and y-directions, respectively. We obtain the total exposura’j‘
any point of the recording medium (say, film or digital memory) by integratin? "
instantaneous exposure over the time interval during which the imaging syste”
shutter is open.

z . | thd
A s bt chutter nneninag and Alacia . oo . E 1..oand

(small dot of light) using the same system settings. As noted in Section 5.5, a linear,

Explain in detail the Order Statistic Filters.

Perform any two Order statistic filtering on the following:

20 (50 | 30
40| 40 | 20
10| 10 | 20

(Add the padding required)
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Ans:

ORDER-STATISTIC FILTERS

We introduced order-statistic filters in Section 3.6. We now expand the discussion
in that section and introduce some additional order-statistic filters. As noted in Sec-
tion 3.6, order-statistic filters are spatial filters whose response is based on ordering
(ranking) the values of the pixels contained in the neighborhood encompassed bY
the filter. The ranking result determines the response of the filter.

Median Filter

The best-known order-statistic filter in image processing is the median filter: which

as its name implies, replaces the value of a pix ey Jevelt
‘ ) " el . . A l(.“'
in a predefined neighborhood of that piXEE P I LTS

f(x.y) = median {g(r,c)}

where, as before, S, is a subimage (“eighborh

: z v he v
uc of the pixel at (x,y) is included in the ity I1

ood) centered on point (x.)) fer
in T

putation of the median. Medt




ypes of random noisc. they provide €X¢

: y Q“Q
bly less blurring than linear sm,, !

are quite popular because. for certam t )
Mhip,

noise-reduction capabilities, with C““S'dt';icul.”-w effective in the presence of b H
. ) ; i ek SHers are par L o 0]
Nlters of similar size. Median filters “,.,-I]:x-lmplc 5 3 helow shows. € omputay

al AL

i g N g
arc discussed in Section 3.6,

bipolar and unipolar impulse NOISC, i
a . = ‘T
the median and implementation of this filte

Max and Min Filters o o
Although the median filter is by far the order-statistic filter most used in Image pr,
cc\sin:n is bv no means the only one. The median represen.ts .lhe 50th perf:entilcf,[
a mnI\t‘d set of numbers, but \-*(1;1 will recall from basic stalistics that rE!nkmg lengs
itself to many other pnssihiiit-ies. For example, using the 100th percentile resuls j,
the so-called max filter. given by

Flisyi= (rr_lc})gc_‘{g(m)} (5-28)

This filter is useful for finding the brightest points in an image or for eroding dark
regions adjacent to bright areas. Also, because pepper noise has very low values, i
is reduced by this filter as a result of the max selection process in the subimage area
S

Xy "

The Oth percentile filter is the min filter:

wn
rJ

Jx.y)= min {g(r.e)}

This filter is useful for finding the darkest points in an image or for eroding light

regions adjacent to dark areas. Also, it reduces salt noise as a result of the min opers-
tion.

Midpoint Filter

The midpoint filter computes the midpoint between the maximum and minimum
values in the arca encompassed by the filter:

flx.y) = 4 max {g(r c)} : 3.3
2| (reyes,, , +(rftn)gl {g(r,c)} i
Note that this filter combines order -

. i atistics
domly distributed noise, like Gaussj

b « 1 : l JL‘
' -5 and averaging, It works best (01
an or uniform nojse,

Alpha-Trimmed Mean Filter

Suppose that we delete the ¢/ )

I I{ll neighborl {IRY ; d/ I”“(.\l and the df2 I]iu.hL"\'l int it lues Ull ﬂv'lw

I 1c Clj Ornood | it el G s L b ¢ensity va (S s z
iy Cthe remaining pin — d pisels " =

: o] et
PIXels is called an alpha-rrumnit d?

1\-(!}!') IL‘PI\‘\L\”
. these re
frlter. The form of this filter g

A hlter tormed by averaging i
g ‘ dining

~

flx,y)=

1
gr(r.c (5-31)
mn — d (’v‘é’% # )
:vllhcre t:e vilie Ofd'can range from 0 to mn —1. When d = 0 the alpha-trimmed
i tefr_]re uces to the arnhryeng mean filter discussed earlier. If we choose d = mn — 1,
the filter becomes a median filter. For other values of d, the alpha-trimmed filter is

useful in situations invaving multiple types of noise, such as a combination of salt-
and-pepper and Gaussian noise.
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