USN					

Internal Assessment Test 2 – November 2024

	Sub: DIGITAL IMAGE PROCESSING Sub Code: 21CS732				Branch: AIML		
Date	Date: 20.11.24 Duration: 90 min Max Marks: 50 Sem/Sec: VII -				- A	О	BE
		MARKS	СО	RBT			
1	Explain the implementation of first order derivatives for image sharpening - The gradient.						L2
	Ans:						
using first-order derivatives for (Non-linear)							
	Image sharpening - The Caradiens						
	* 18+ derivatives in Image Processing are						
	* for a function $f(x,y)$, the gradient of f" at co-ordinates (x,y) is defined as the						
	2-dimensional column vector						
	$\nabla f = \operatorname{grad}(f) = \left[\begin{array}{c} g_{\chi} \\ g_{y} \end{array} \right] = \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial y} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}{\partial x} \end{array} \right] \rightarrow \left[\begin{array}{c} \frac{\partial f}{\partial \chi} \\ \frac{\partial f}$						
	Propulty it points in the direction of the greatest rate of change of f' at location (x,y)						
	+ magnitude (length) of vector of, denoted as M(x,y), where						
	of change in the direction of the gradient						
	of change in the direction of the gradient vector $m(x,y) \sim g_x + g_y \rightarrow 12$						
		122	Scanne	ed with CamScanner			

	# masks of even gizes don't have a center of gymmetry # The smallest filter mask is 3×3 $ 9x = \frac{\partial f}{\partial x} = (77 + 278 + 79) \\ - (71 + 272 + 73) $ # $9y = \frac{\partial f}{\partial y} = (73 + 276 + 79) - (71 + 274 + 729)$ # There equis can be implemented using masks of fig (2). # Substituting 91 + 9y in (a) $ M(7, y) \approx (77 + 278 + 729) - (71 + 272 + 723) + (73 + 276 + 79) - (71 + 272 + 723) + The masks one called lobel operatory # Scanned with CamScanner$			
2	Explain Spatial Correlation and convolution. Perform correlation and convolution on the following function:	10	CO2	L3
	f = 0 0 0 1 1 0 1 w = 8 2 4			
	(Add the padding required)			
	Ans:			

				_2	010	· Y	ade	lin	9 -	.,			
					,	, ,			J 1 · · · ·	<u></u>			
	1 -	0	0	0	0	1	.1	0	.1	0			
	ω -	8	2	4									
			8	2	4								
				8	2	4							
					8	2	4						
				:		8	2	4					
							.8.	2	4				
								8	2	4			
· Yeart 00046101220													
(Note: Reverse result for Convolution)													
a	What is Unsharp mas	king ar	nd High	boost	filteri	ng?					6	CO2	
	Ans:												

* Laplacian for image sharpining \[\frac{1}{9(\chi,\chi)} = \frac{1}{9(\chi,\chi)} + C \left(\chi^2 \frac{1}{9(\chi,\chi)}) \] \[\frac{1}{9(\chi,\chi)} = \frac{1}{9(\chi,\chi)} + C \left(\chi^2 \frac{1}{9(\chi,\chi)}) \] \[\frac{1}{9(\chi,\chi)} = \frac{1}{9(\chi,\chi)} + \chi \text{ for many} \text{ (sub)} \] \[\frac{1}{10\text{ other filter are well add)}} \] \[\text{unsharp masking 2 Highboost filtering} \] \[\text{4 Process that has been weld by the priting} \] \[\text{4 Publishing Industry for many years is to sharpen images Consists of subtracting an unsharp (smoothed) version of an image \text{Prom the original image} \] \[\text{4 Consists of foll Steps} \] \[4 Consists of following fo			
--	--	--	--

THE MECHANICS OF LINEAR SPATIAL FILTERING

A linear spatial filter performs a sum-of-products operation between an image f and a filter kernel, w. The kernel is an array whose size defines the neighborhood of operation, and whose coefficients determine the nature of the filter. Other terms used to refer to a spatial filter kernel are mask, template, and window. We use the term filter kernel or simply kernel.

Figure 3.28 illustrates the mechanics of linear spatial filtering using a 3×3 kernel. At any point (x, y) in the image, the response, g(x, y), of the filter is the sum of products of the kernel coefficients and the image pixels encompassed by the kernel:

$$g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \dots + w(0,0)f(x,y) + \dots + w(1,1)f(x+1,y+1)$$
(3-30)

As coordinates x and y are varied, the center of the kernel moves from pixel to pixel, generating the filtered image, g, in the process.

Observe that the center coefficient of the kernel, w(0,0), aligns with the pixel at location (x, y). For a kernel of size $m \times n$, we assume that m = 2a + 1 and n = 2b + 1, where a and b are nonnegative integers. This means that our focus is on kernels of odd size in both coordinate directions. In general, linear spatial filtering of an image of size $M \times N$ with a kernel of size $m \times n$ is given by the expression

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$
(3-31)

where x and y are varied so that the center (origin) of the kernel visits every pixel in force. For a fixed value of (x, y), Eq. (3-31) implements the sum of products of the form shown in Eq. (3-30), but for a kernel of arbitrary odd size. As you will learn in the following section, this equation is a central tool in linear filtering.

5.1 A MODEL OF THE IMAGE DEGRADATION/RESTORATION PROCESS

In this chapter, we model image degradation as an operator \mathcal{H} that, together with a additive noise term, operates on an input image f(x,y) to produce a degraded image g(x,y) (see Fig. 5.1). Given g(x,y), some knowledge about \mathcal{H} , and some knowledge about the additive noise term $\eta(x,y)$, the objective of restoration is to obtain an estimate $\hat{f}(x,y)$ of the original image. We want the estimate to be as close as possible to the original image and, in general, the more we know about \mathcal{H} and η , the closer $\hat{f}(x,y)$ will be to f(x,y).

We will show in Section 5.5 that, if \mathcal{H} is a linear, position-invariant operator, then the degraded image is given in the spatial domain by

$$g(x,y) = (h \star f)(x,y) + \eta(x,y)$$
(5-1)

where h(x, y) is the spatial representation of the degradation function. As in Chapter 3 and 4, the symbol " \star " indicates convolution. It follows from the convolution theorem that the equivalent of Eq. (5-1) in the frequency domain is

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$
 (5.2)

where the terms in capital letters are the Fourier transforms of the corresponding terms in Eq. (5-1). These two equations are the foundation for most of the restortion material in this chapter.

b Briefly mention 3 important noise PDFs.

CO3 L1

6

Ans:

1. Gaussian Noise

The PDF of a Guassian random variable, z, is defined by the following familiar expression:

Where z represents intensity, \overline{z} is the mean value of z, and σ is its standard deviation.

2. Rayleigh Noise

The PDF is given by

$$p(z) = \begin{cases} \frac{2}{b}(z - a)e^{-(z - a)^2/b} & z \ge a \\ 0 & z < a \end{cases}$$

The mean and variance of z when this random variable is characterized by a Rayleigh PDF are

$$\overline{z} = a + \sqrt{\pi b/4}$$

and

$$\sigma^2 = \frac{b(4-\pi)}{4}$$

3. Gamma Noise

The PDF of Erlang or Gamma noise is

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!} e^{-az} & z \ge 0\\ 0 & z < 0 \end{cases}$$

where the parameters are such that a>b, b is a positive integer, and "!" indicates factorial. The mean and variance of z are

$$\overline{z} = \frac{b}{a}$$

and

$$\sigma^2 = \frac{b}{a^2}$$

until they are degraded as closely as possible to the image we wish to restore. Then the idea is to obtain the impulse response of the degradation by imaging an impulse (small dot of light) using the same system settings. As noted in Section 5.5, a linear, space-invariant system is characterized completely by its impulse response.

An impulse is simulated by a bright dot of light, as bright as possible to reduce the effect of noise to negligible values. Then, recalling that the Fourier transform of an impulse is a constant, it follows from Eq. (5-65) that

$$H(u,v) = \frac{G(u,v)}{A} \tag{5-67}$$

where, as before, G(u, v) is the Fourier transform of the observed image, and A is a constant describing the strength of the impulse. Figure 5.24 shows an example.

ESTIMATION BY MODELING

Degradation modeling has been used for many years because of the insight it affords into the image restoration problem. In some cases, the model can even take into account environmental conditions that cause degradations. For example, a degradation model proposed by Hufnagel and Stanley [1964] is based on the physical characteristics of atmospheric turbulence. This model has a familiar form:

$$H(u,v) = e^{-k(u^2 + v^2)^{5/6}}$$
 (5-68)

CO₃

10

L3

where k is a constant that depends on the nature of the turbulence. With the exception of the 5/6 power in the exponent, this equation has the same form as the Gaussian lowpass filter transfer function discussed in Section 4.8. In fact, the Gaussian LPF is used sometimes to model mild, uniform blurring. Figure 5.25 shows examples obtained by simulating blurring an image using Eq. (5-68) with values k = 0.0025

(severe turbulence), k = 0.001 (mild turbulence), and k = 0.00025 (low turbulence) We restore these images using various methods later in this chapter.

Another approach used frequently in modeling is to derive a mathematical model starting from basic principles. We illustrate this procedure by treating in some detail the case in which an image has been blurred by uniform linear motion between the image and the sensor during image acquisition. Suppose that an image f(x,y)undergoes planar motion and that $x_0(t)$ and $y_0(t)$ are the time-varying components of motion in the x- and y-directions, respectively. We obtain the total exposure at any point of the recording medium (say, film or digital memory) by integrating the instantaneous exposure over the time interval during which the imaging system shutter is open. and that

Explain in detail the Order Statistic Filters.

Perform any two Order statistic filtering on the following:

that chutter opening and closing tal-

20	50	30
40	40	20
10	10	20

6

(Add the padding required)

Ans:

ORDER-STATISTIC FILTERS

We introduced order-statistic filters in Section 3.6. We now expand the discussion in that section and introduce some additional order-statistic filters. As noted in Section 3.6, order-statistic filters are spatial filters whose response is based on ordering (ranking) the values of the pixels contained in the neighborhood encompassed by the filter. The ranking result determines the response of the filter.

Median Filter

The best-known order-statistic filter in image processing is the *median filter*, which as its name implies, replaces the value of a pixel by the median of the intensity levels in a predefined neighborhood of that pixel:

$$\hat{f}(x,y) = \underset{(r,c) \in S_{xy}}{\operatorname{median}} \left\{ g(r,c) \right\}$$

where, as before, S_{xy} is a subimage (neighborhood) centered on point (x, y). The value of the pixel at (x, y) is included in the computation of the median. Median filters

are quite popular because, for certain types of random noise, they provide excellent are quite popular because, for certain types of the presence o noise-reduction capabilities, with considerably effective in the presence of both filters of similar size. Median filters are particularly effective in the presence of both bipolar and unipolar impulse noise, as Example 5.3 below shows. Computation of the median and implementation of this filter are discussed in Section 3.6.

Max and Min Filters

Although the median filter is by far the order-statistic filter most used in image processing, it is by no means the only one. The median represents the 50th percentile of a ranked set of numbers, but you will recall from basic statistics that ranking lends itself to many other possibilities. For example, using the 100th percentile results in the so-called max filter, given by

$$\hat{f}(x,y) = \max_{(r,c) \in S_{xy}} \{ g(r,c) \}$$
 (5-28)

This filter is useful for finding the brightest points in an image or for eroding dark regions adjacent to bright areas. Also, because pepper noise has very low values, it is reduced by this filter as a result of the max selection process in the subimage area S_{xy} . The 0th percentile filter is the *min filter*:

$$\hat{f}(x,y) = \min_{(r,c) \in S_{rv}} \{ g(r,c) \}$$
 (5-29)

This filter is useful for finding the darkest points in an image or for eroding light regions adjacent to dark areas. Also, it reduces salt noise as a result of the min operation.

Midpoint Filter

The midpoint filter computes the midpoint between the maximum and minimum values in the area encompassed by the filter:

$$\hat{f}(x,y) = \frac{1}{2} \left[\max_{(r,c) \in S_{xy}} \left\{ g(r,c) \right\} + \min_{(r,c) \in S_{xy}} \left\{ g(r,c) \right\} \right]$$
 (5-30)

Note that this filter combines order statistics and averaging. It works best for rail domly distributed noise, like Gaussian or uniform noise.

Alpha-Trimmed Mean Filter

Suppose that we delete the d/2 lowest and the d/2 highest intensity values of g(r,t) in the neighborhood S. Let $g_1(r,t)$ in the neighborhood S_{xy} . Let $g_R(r,c)$ represent the remaining mn-d pixels in S_0 . A filter formed by averaging these remaining pixels is called an *alpha-trimmed* m^{edh}

$$\hat{f}(x,y) = \frac{1}{mn - d} \sum_{(r,c) \in S_{xy}} g_R(r,c)$$
 (5-31)

where the value of d can range from 0 to mn-1. When d=0 the alpha-trimmed filter reduces to the arithmetic mean filter discussed earlier. If we choose d = mn - 1, the filter becomes a median filter. For other values of d, the alpha-trimmed filter is useful in situations involving multiple types of noise, such as a combination of saltand-pepper and Gaussian noise.

CI	CCI	HOD
	All the Best	