

USN

Internal Assessment Test 2 – December 2024

Sub: OPERATING SYSTEMS
Sub

Code:
BCS303 Branch:

AIML/CSEAI

ML

Date: 17.12.24
Duration

:
90

minutes

Max

Marks:
50 Sem/Sec: III -A, B, C IPCC

Answer any FIVE FULL Questions MARKS CO RBT

1. Discuss in detail about contiguous memory allocation with illustration? 10M CO4 L2

2

 Consider the following page reference stream:

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. How many page faults would occur for

LRU and FIFO replacement algorithms assuming 3-page frames? Which one of

the two is more efficient?

10M CO4 L3

3 Explain briefly the various operations performed on files. 10M CO5 L2

4
What is a deadlock? Illustrate the necessary conditions an operating system must

satisfy if a deadlock has to occur?
10M CO3 L2

 5 Discuss briefly about demand paging in memory management schemes. 10M CO4 L2

6
Given the memory partitions of 100k, 500k, 200k,300k and 600k apply first fit,

best fit and worst fit algorithms to place 212k, 417k, 112k and 426k.
10M CO4 L3

CI CCI HOD

 —-----—------------------------------All the Best--

Internal Assessment Test 2 – December 2024

Scheme & Solutions

Sub: OPERATING SYSTEMS Sub

Code:
BCS303 Branch

:
AIML/CSEAIML

Date:

17.12.24

Duratio

n:
90

minutes

Max

Marks:
50 Sem/Sec: III -A, B, C IPCC

Answer any FIVE FULL Questions MAR

KS

CO RBT

1. Discuss in detail about contiguous memory allocation with illustration?

Memory Management--------3M

Address Reallocation diagram & Explanation-----3M

Memory Allocation------2M

Fragmentation-----2M

The main memory must accommodate both the operating system and the various

user processes. Therefore we need to allocate the parts of the main memory in

the most efficient way possible.

• Memory is usually divided into 2 partitions: One for the resident OS. One for

the user processes.

• Each process is contained in a single contiguous section of memory.

1. Memory Mapping and Protection

• Memory-protection means protecting OS from user-process and protecting

user processes from one another.

• Memory-protection is done using

Relocation-register: contains the value of the smallest physical-address.

Limit-register: contains the range of logical-addresses.

• Each logical-address must be less than the limit-register.

• The MMU maps the logical-address dynamically by adding the value in the

relocation register.

This mapped-address is sent to memory

• When the CPU scheduler selects a process for execution, the dispatcher loads

the relocation and limit-registers with the correct values.

• Because every address generated by the CPU is checked against these

registers, we can protect the OS from the running-process.

• The relocation-register scheme provides an effective way to allow the OS size

to change dynamically.

• Transient OS code: Code that comes & goes as needed to save memory-space

and overhead for unnecessary swapping.

Figure: Hardware support for relocation and limit-registers

2. Memory Allocation

Two types of memory partitioning are:

1. Fixed-sized partitioning

10M CO

4

L2

2. Variable-sized partitioning

1. Fixed-sized Partitioning

• The memory is divided into fixed-sized partitions.

• Each partition may contain exactly one process.

• The degree of multiprogramming is bound by the number of partitions.

• When a partition is free, a process is selected from the input queue and loaded

into the free partition.

• When the process terminates, the partition becomes available for another

process.

2. Variable-sized Partitioning

• The OS keeps a table indicating which parts of memory are available and

which parts are occupied.

• A hole is a block of available memory. Normally, memory contains a set of

holes of various sizes.

• Initially, all memory is available for user-processes and considered one large

hole.

When a process arrives, the process is allocated memory from a large hole.

• If we find the hole, we allocate only as much memory as is needed and keep

the

remaining memory available to satisfy future requests.

Three strategies used to select a free hole from the set of available holes:

1. First Fit: Allocate the first hole that is big enough. Searching can start either

at the beginning of the set of holes or at the location where the previous first-fit

search ended.

2. Best Fit: Allocate the smallest hole that is big enough. We must search the

entire list, unless the list is ordered by size. This strategy produces the smallest

leftover hole.

3. Fragmentation

Two types of memory fragmentation:

1. Internal fragmentation

2. External fragmentation

1. Internal Fragmentation

• The general approach is to break the physical-memory into fixed-sized blocks

and allocate memory in units based on block size.

• The allocated-memory to a process may be slightly larger than the requested-

memory.

• The difference between requested-memory and allocated-memory is called

internal

fragmentation i.e. Unused memory that is internal to a partition.

2. External Fragmentation

• External fragmentation occurs when there is enough total memory-space to

satisfy a request but the available-spaces are not contiguous. (i.e. storage is

fragmented into a large number of small holes).

• Both the first-fit and best-fit strategies for memory-allocation suffer from

external

fragmentation.

• Statistical analysis of first-fit reveals that given N allocated blocks, another

0.5 N blocks will be lost to fragmentation. This property is known as the 50-

percent rule.

Two solutions to external fragmentation:

• Compaction: The goal is to shuffle the memory-contents to place all free

memory

together in one large hole. Compaction is possible only if relocation is dynamic

and done at execution-time

• Permit the logical-address space of the processes to be non-contiguous. This

allows a process to be allocated physical-memory wherever such memory is

available. Two techniques achieve this solution: 1) Paging and 2) Segmentation.

3. Worst Fit: Allocate the largest hole. Again, we must search the entire list,

unless it is sorted by size. This strategy produces the largest leftover hole.

First-fit and best fit are better than worst fit in terms of decreasing time and

storage utilization.

2 Consider the following page reference stream:

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. How many page faults would occur

for LRU and FIFO replacement algorithms assuming 3-page frames?

Which one of the two is more efficient?

LRU-------5M

FIFO----4M

Conclusion—1M

Least Recently Used (LRU) Algorithm

• The LRU (Least Recently Used) algorithm, predicts that the page that has not

been used

in the longest time is the one that will not be used again in the near future.

• Some view LRU as analogous to OPT, but here we look backwards in time

instead of

forwards.

The main problem to how to implement LRU is the LRU requires additional

h/w assistance.

Total Page Faults (LRU): 12 page faults

FIFO Algorithm:

• This is the simplest page replacement algorithm. A FIFO replacement

algorithm associates

each page the time when that page was brought into memory.

• When a Page is to be replaced the oldest one is selected.

• We replace the queue at the head of the queue. When a page is brought into

memory, we

insert it at the tail of the queue.

• In the following example, a reference string is given and there are 3 free

frames. There are

20 page requests, which results in 15 page faults

Example: Consider the following references string with frames initially empty.

10M CO

4

L3

▪ The first three references (7,0,1) cases page faults and are brought into the

empty frames.

▪ The next references 2 replaces page 7 because the page 7 was brought in first.

x Since 0 is

the next references and 0 is already in memory e has no page faults.

▪ The next references 3 results in page 0 being replaced so that the next

references to 0

causer page fault. This will continue till the end of string. There are 15 faults all

together.

Thus, LRU is more efficient than FIFO in this case because it results in fewer

page faults.

3 Explain briefly the various operations performed on files.

5 file Operation- each 2 marks

File Operations

A file is an abstract data type. To define a file properly, we need to consider the

operations

that can be performed on files.

1. Creating a file:Two steps are necessary to create a file,

a) Space in the file system must be found for the file.

b) An entry for the new file must be made in the directory.

2. Writing a file:To write a file, we make a system call specifying both the name

of the

file and the information to be written to the file. Given the name of the file, the

system searches the directory to find the file's location. The system must keep a

write

pointer to the location in the file where the next write is to take place. The write

pointer must be updated whenever a write occurs.

3. Reading a file:To read from a file, we use a system call that specifies the

name of the

file and where the next block of the file should be put. Again, the directory is

searched for the associated entry, and the system needs to keep a read pointer to

the

location in the file where the next read is to take place. Once the read has taken

place,

the read pointer is updated. Because a process is usually either reading from or

writing to a file, the current operation location can be kept as a per-process

current

file-position pointer.

4. Repositioning within a file:The directory is searched for the appropriate entry,

and

the current-file-position pointer is repositioned to a given value. Repositioning

within

a file need not involve any actual I/0. This file operation is also known as files

seek.

5. Deleting a file:To delete a file, search the directory for the named file. Having

found

the associated directory entry, then release all file space, so that it can be reused

by

other files, and erase the directory entry.

6. Truncating a file:The user may want to erase the contents of a file but keep

its

attributes. Rather than forcing the user to delete the file and then recreate it, this

10M CO

5

L2

function allows all attributes to remain unchanged but lets the file be reset to

length

zero and its file space released.

4 What is a deadlock? Illustrate the necessary conditions an operating

system must satisfy if a deadlock has to occur?

Definition-2M

Conditions and explanation—8M

A process requests resources, if the resources are not available at that time, the

process enters a waiting state. Sometimes, a waiting process is never again able

to change state, because the resources it has requested are held by other waiting

processes. This situation is called a Deadlock.

SYSTEM MODEL

• A system consists of a finite number of resources to be distributed among a

number of competing processes. The resources are partitioned into several

types, each consisting of

some number of identical instances. Memory space, CPU cycles, files, and I/0

devices are examples of resource types.

• A process must request a resource before using it and must release the resource

after using it. A process may request as many resources as it requires carrying

out its designated task. The number of resources requested may not exceed the

total number of resources available in the system.

Under the normal mode of operation, a process may utilize a resource in only

the following sequence:

1. Request: The process requests the resource. If the request cannot be granted

immediately, then the requesting process must wait until it can acquire the

resource.

2. Use: The process can operate on the resource.

3. Release: The process releases the resource.

A set of processes is in a deadlocked state when every process in the set is

waiting for an event that can be caused only by another process in the set. The

events with which we are mainly concerned here are resource acquisition and

release. The resources may be either physical resources or logical resources

To illustrate a deadlocked state, consider a system with three CD RW drives.

Suppose each of three processes holds one of these CD RW drives. If each

process now requests another drive, the three processes will be in a deadlocked

state. Each is waiting for the event "CD RW is released," which can be caused

only by one of the other waiting processes. This example illustrates a deadlock

involving the same resource type. Deadlocks may also involve different

resource types. For example, consider a system with one printer and one DVD

drive. Suppose that process Pi is holding the DVD and process Pj is

holding the printer. If Pi requests the printer and Pj requests the DVD drive, a

deadlock occurs.

DEADLOCK CHARACTERIZATION

Necessary Conditions

A deadlock situation can arise if the following four conditions hold

simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode,

that is, only one process at a time can use the resource. If another process

requests that resource, the requesting process must be delayed until the resource

has been released.

2. Hold and wait: A process must be holding at least one resource and waiting

to acquire additional resources that are currently being held by other processes.

10M CO

3

L2

3. No preemption: Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has

completed its task.

4. Circular wait: A set {P0, Pl, ... , Pn} of waiting processes must exist such that

Po is waiting for a resource held by P1, P1 is waiting for a resource held by P2,

... , Pn-1 is

waiting for a resource held by Pn and Pn is waiting for a resource held by Po.

 5 Discuss briefly about demand paging in memory management schemes.

DEMAND PAGING ----------4M

Diagram with valid and invalid bit ---3M

Page Fault -------3M

• A demand paging is similar to paging system with swapping when we want to

execute a process we swap the process the in to memory otherwise it will not be

loaded in to memory.

• A swapper manipulates the entire processes, where as a pager manipulates

individual pages of the process.

▪ Bring a page into memory only when it is needed

▪ Less I/O needed

▪ Less memory needed

▪ Faster response More users

▪ Page is needed ⇒ reference to it

▪ invalid reference ⇒abort

▪ not-in-memory ⇒ bring to memory

▪ Lazy swapper– never swaps a page into memory unless page will be needed

▪ Swapper that deals with pages is a pager.

Fig: Transfer of a paged memory into continuous disk space

• Basic concept: Instead of swapping the whole process the pager swaps only

the necessary pages in to memory. Thus it avoids reading unused pages and

decreases the swap time and amount of physical memory needed.

• The valid-invalid bit scheme can be used to distinguish between the pages that

are on the disk and that are in memory.

▪ With each page table entry a valid–invalid bit is associated

▪ (v ⇒ in-memory, i⇒not-in-memory)

▪ Initially valid–invalid bit is set to ion all entries

▪ Example of a page table snapshot:

10M CO

4

L2

During address translation, if valid–invalid bit in page table entry is I ⇒ page

fault.

• If the bit is valid then the page is both legal and is in memory.

• If the bit is invalid then either page is not valid or is valid but is currently on

the disk. Marking a page as invalid will have no effect if the processes never

access to that page. Suppose if it access the page which is marked invalid, causes

a page fault trap. This may result in failure of OS to bring the desired page in to

memory.

Page Fault

If a page is needed that was not originally loaded up, then a page fault trap is

generated.

Steps in Handling a Page Fault

1. The memory address requested is first checked, to make sure it was a valid

memory request.

2. If the reference is to an invalid page, the process is terminated. Otherwise, if

the page is not present in memory, it must be paged in.

3. A free frame is located, possibly from a free-frame list.

4. A disk operation is scheduled to bring in the necessary page from disk.

5. After the page is loaded to memory, the process's page table is updated with

the new frame number, and the invalid bit is changed to indicate that this is now

a valid page reference.

6. The instruction that caused the page fault must now be restarted from the

beginning.

6 Given the memory partitions of 100k, 500k, 200k,300k and 600k apply first

fit, best fit and worst fit algorithms to place 212k, 417k, 112k and 426k.

First Fit------3M

Best Fit------3M

Worst Fit---4M

1. First Fit Algorithm

The First Fit algorithm allocates the first partition that is large enough to hold

the requested memory.

Process:

1. 212k: The first partition large enough is 500k (since 100k and 200k are too

small).

Remaining partitions: 100k, 200k, 300k, 600k

After allocation: 500k - 212k = 288k

2. 417k: The first partition large enough is 600k.

Remaining partitions: 100k, 200k, 300k, 288k

After allocation: 600k - 417k = 183k

3. 112k: The first partition large enough is 200k.

Remaining partitions: 100k, 288k, 300k, 183k

After allocation: 200k - 112k = 88k

4. 426k: The first partition large enough is 300k, but it's not big enough for

426k.

The next available partition is 288k, which is too small.

Thus, 426k cannot be allocated.

2. Best Fit Algorithm

The Best Fit algorithm places the request in the smallest partition that can

accommodate it, leaving the least leftover space.

Process:

1. 212k: The best fit is 300k (since it's the smallest partition that can

accommodate 212k).

Remaining partitions: 100k, 500k, 200k, 600k

After allocation: 300k - 212k = 88k

2. 417k: The best fit is 500k (the smallest partition that can accommodate

417k).

Remaining partitions: 100k, 200k, 88k, 600k

After allocation: 500k - 417k = 83k

3. 112k: The best fit is 200k (the smallest partition that can accommodate

112k).

Remaining partitions: 100k, 88k, 83k, 600k

After allocation: 200k - 112k = 88k

4. 426k: The best fit is 600k (the smallest partition that can accommodate

426k).

Remaining partitions: 100k, 88k, 83k, 88k

After allocation: 600k - 426k = 174k

3. Worst Fit Algorithm

The Worst Fit algorithm places the request in the largest partition, leaving the

largest possible leftover space.

10M CO

4

L3

Process:

1. 212k: The worst fit is 600k (the largest partition).

Remaining partitions: 100k, 500k, 200k, 300k

After allocation: 600k - 212k = 388k

2. 417k: The worst fit is 500k (the largest remaining partition).

Remaining partitions: 100k, 200k, 300k, 388k

After allocation: 500k - 417k = 83k

3. 112k: The worst fit is 388k (the largest remaining partition).

Remaining partitions: 100k, 200k, 300k, 83k

After allocation: 388k - 112k = 276k

4. 426k: The worst fit is 300k, but it's not large enough.

The next available partition is 276k, which is also too small.

Thus, 426k cannot be allocated.

