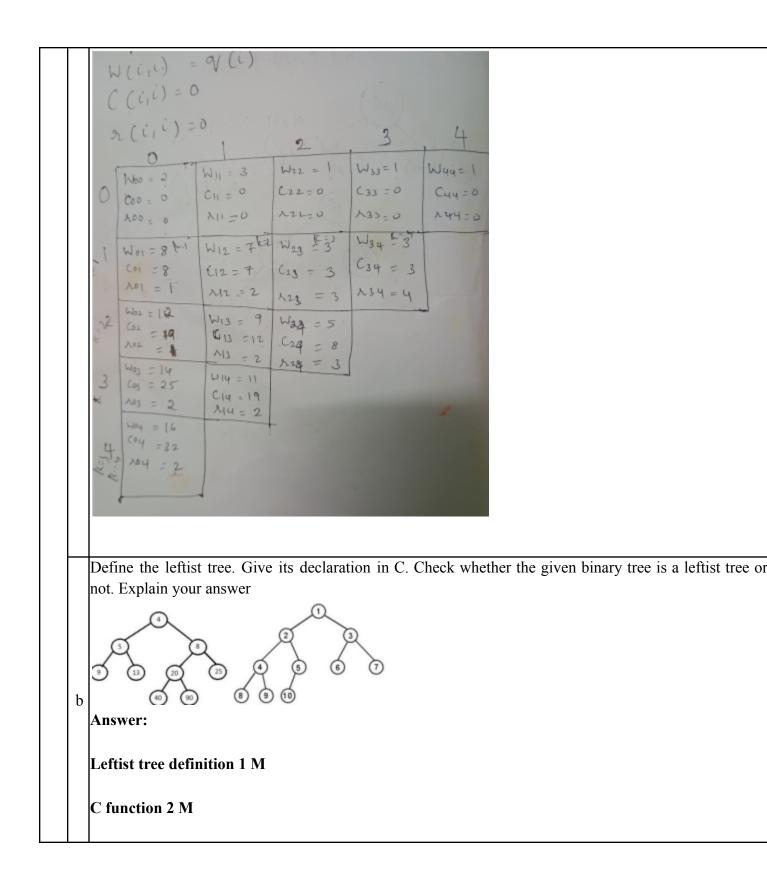
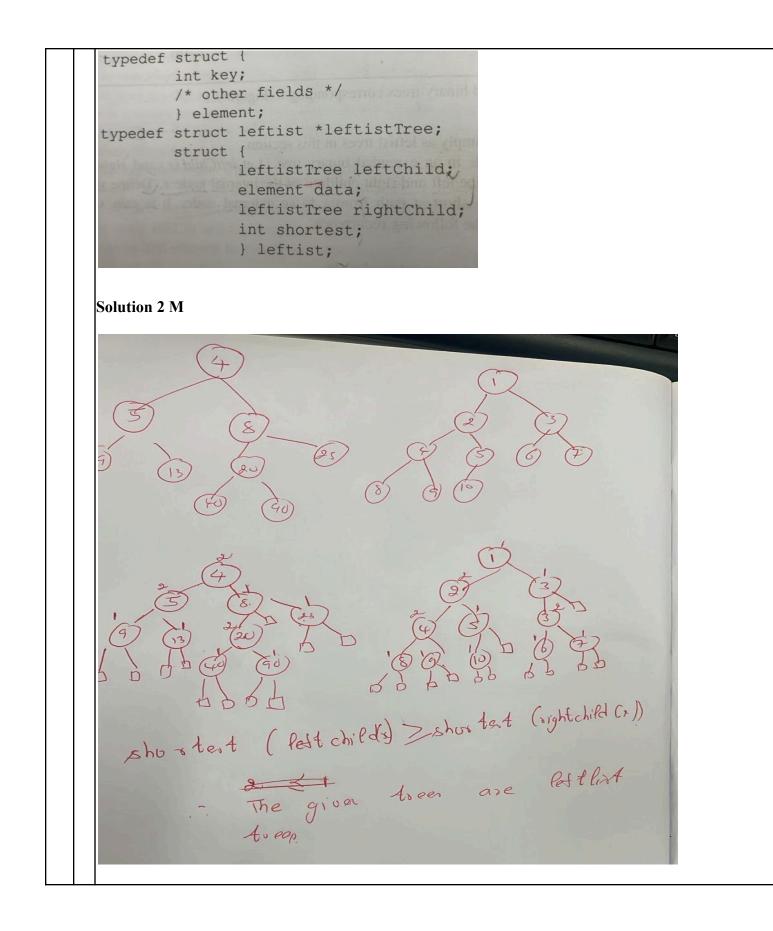

Su	b:	DATA STRUCTURES AND APPLICATIONS Sub Code: BCS304									
Date:				90 minutes	Max Marks:	50	Sem/Sec:				
			Durution.				III A,B,C				
<u>Scheme and Solutions</u>											
1	a	Construct a binary search tree for the given values 14, 15, 7, 9, 18, 3, 5, 16, 20. Write the C function for the inorder, preorder and postorder traversal and apply the same. Answer: Construction of BST-2M									
		C function (5 marks)									
		void inorderTraversal(struct Node* root) {									
		<pre>// Empty Tree if (root == NULL) return;</pre>									
		<pre>// Recur on the left subtree inorderTraversal(root->left);</pre>									
		<pre>// Visit the current node printf("%d ", root->data);</pre>									
			n the right su versal(root-								


		<pre>void preorderTraversal(struct Node* root) { // Base case if (root == NULL) return; // Visit the current node printf("%d ", root->data); // Recur on the left subtree preorderTraversal(root->left); // Recur on the right subtree preorderTraversal(root->right); // Function to perform postorder traversal void postorderTraversal(struct Node* node) { // Base case if (node == NULL) return; // Recur on the left subtree postorderTraversal(node->left); // Recur on the left subtree postorderTraversal(node->left); // Recur on the right subtree postorderTraversal(node->left); // Nisit the current node printf("%d ", node->data); } Traversals (3M) Inorder: 3, 5, 7, 9, 14, 15, 16, 18, 20 Preorder: 14, 7, 5, 3, 9, 16, 15, 18, 20 Prostorder: 3, 5, 9, 7, 15, 20, 18, 16, 14 </pre>				
		Explain winner tree and looser tree with suitable examples.				
	a	Answer: Winner Tree Explanation with example-2.5M Looser Tree Explanation with example-2.5M				
2		Define a graph. Show the adjacency matrix and adjacency list for the following.				
	b					



		Differentiate between height-biased and weight-biased leftist tree with examples. Answer: (4 M + 1 M Example)							
		Aspect	Height-biased Leftist Tree	Weight-biased Leftist Tree					
		Balance Criterion	Based on the height of the left and right subtrees.	Based on the number of nodes in the left and right subtrees.					
		Null Path Length (NPL)	NPL of a node is the height of its right subtree.	NPL of a node is the number of nodes in its right subtree.					
		Subtree Priority	The left subtree is prioritized by height.	The left subtree is prioritized by size (number of nodes).					
	b	Use Case	More focused on maintaining the height balance.	More focused on maintaining a size balance between subtrees.					
		Tree Shape	Tends to be more height-balanced.	Tends to be more size-balanced.					
1	a	 What is a collision? Explain the collision resolution techniques in detail considering 7, 24, 18, 52, 36, 11, 23 with 9 memory locations. Use h(k) = k mod m. Answer: Collision and Collision resolution techniques (2M) Solution (8 M) 							

Algorithm DFSCVerterV Visited [V] = 1 for all vertex no adjace to V' id (visited [w] = 0 DFS(~); Alegorithm BES(V) A BES & G(V, E) is comiled out beginning at vertex V and array visited of n initially set do false Visited (V) = true; unitialize queue (Q); add (Q,V); While Enot emply quere (Q) do V= delete (Q, V); for all vertex ber adjacent both if not visited [w] then add [Q, w); Misited [w] = true; 3 2 BFS: 0132564 DFS: 0152346 What is the need for an optimal BST. Find the optimal BST for n=4, Keys are 10,15,20, 25. p1, p2, p3, p4 =3,3,1,1 q0, q1, q2, q3, q4 =2,3,1,1,1 6 а Answer: Need for BST-1M Problem-4M

