
Sub: DATA STRUCTURES AND APPLICATIONS Sub Code: BCS304

Date: Duration: 90 minutes Max Marks: 50 Sem/Sec:
III A,B,C

Scheme and Solutions

1 a

Construct a binary search tree for the given values 14, 15, 7, 9, 18, 3, 5, 16, 20. Write the C function
for the inorder, preorder and postorder traversal and apply the same.
Answer:

Construction of BST-2M

C function (5 marks)

void inorderTraversal(struct Node* root) {

// Empty Tree
if (root == NULL)
return;

// Recur on the left subtree
inorderTraversal(root->left);

// Visit the current node
printf("%d ", root->data);

// Recur on the right subtree
inorderTraversal(root->right);



}
void preorderTraversal(struct Node* root) {
// Base case
if (root == NULL)
return;

// Visit the current node
printf("%d ", root->data);
// Recur on the left subtree
preorderTraversal(root->left);
// Recur on the right subtree
preorderTraversal(root->right);

}
// Function to perform postorder traversal
void postorderTraversal(struct Node* node) {
// Base case
if (node == NULL)
return;

// Recur on the left subtree
postorderTraversal(node->left);
// Recur on the right subtree
postorderTraversal(node->right);
// Visit the current node
printf("%d ", node->data);

}

Traversals (3M)
Inorder: 3, 5, 7, 9, 14, 15, 16, 18, 20
Preorder: 14, 7, 5, 3, 9, 16, 15, 18, 20
Postorder: 3, 5, 9, 7, 15, 20, 18, 16, 14

2

a

Explain winner tree and looser tree with suitable examples.

Answer:

Winner Tree Explanation with example-2.5M

Looser Tree Explanation with example-2.5M

b

Define a graph. Show the adjacency matrix and adjacency list for the following.



Answer:

Graph Defn: 1M
Representation as adjacency matrix 2M lists 2M

a

What is dynamic hashing? Explain the following techniques with examples:

i) Dynamic hashing using directories

ii) Directory less dynamic hashing.

Answer:

Dynamic hashing is a technique used in hash-based data structures to efficiently handle growing datasets.
Unlike static hashing, where the number of buckets is fixed and may lead to excessive collisions or
wasted space, dynamic hashing allows the number of buckets to grow or shrink dynamically based on the
number of elements in the hash table. This ensures that the table remains efficient and scalable, without
requiring a complete rehashing when the data set changes. (1 M)

Dynamic hashing using directories with example (2M)
Directory less dynamic hashing. (2M)



b

Differentiate between height-biased and weight-biased leftist tree with examples.
Answer: (4 M + 1 M Example)

Aspect Height-biased Leftist Tree Weight-biased Leftist Tree

Balance Criterion Based on the height of the left

and right subtrees.

Based on the number of nodes in

the left and right subtrees.

Null Path Length (NPL) NPL of a node is the height of

its right subtree.

NPL of a node is the number of

nodes in its right subtree.

Subtree Priority The left subtree is prioritized by

height.

The left subtree is prioritized by

size (number of nodes).

Use Case More focused on maintaining

the height balance.

More focused on maintaining a

size balance between subtrees.

Tree Shape Tends to be more

height-balanced.

Tends to be more size-balanced.

4 a

What is a collision? Explain the collision resolution techniques in detail considering 7, 24, 18, 52, 36, 54,
11, 23 with 9 memory locations. Use h(k) = k mod m.
Answer:
Collision and Collision resolution techniques (2M)
Solution (8 M)



5 a

Explain BFS and DFS with its C-function. Apply BFS and DFS for the below graph considering 0 to be
the root node.

Answer:DFS (Depth First Search) BFS (Breadth First Search)

Algorithm for DFS or BFS 5M

Solving 5 M



BFS: 0 1 3 2 5 6 4

DFS: 0 1 5 2 3 4 6

6 a

What is the need for an optimal BST. Find the optimal BST for n=4,

Keys are 10,15,20, 25.

p1, p2, p3, p4 =3,3,1,1

q0, q1, q2, q3, q4 =2,3,1,1,1

Answer:

Need for BST-1M

Problem-4M



b

Define the leftist tree. Give its declaration in C. Check whether the given binary tree is a leftist tree or
not. Explain your answer

Answer:

Leftist tree definition 1 M

C function 2 M



Solution 2 M


