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Answer any FIVE FULL Questions MARKS CO RBT 

1.(a) Construct PDA that aacepts the language L={ wwR | w∈{a+b}* and wR is the 
reversal of w}. Write ID for the string aabbaa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Let’s create the ID for the string aabbaaaabbaaaabbaa. 

1. Initial ID (Before any steps): 
(q0,aabbaa,Z0)(q_0, aabbaa, Z_0)(q0,aabbaa,Z0) 

o State: q0q_0q0 
o Input: aabbaaaabbaaaabbaa 
o Stack: [Z0][Z_0][Z0] 

2. After reading the first aaa: 
(q0,abbaa,[a,Z0])(q_0, abbaa, [a, Z_0])(q0,abbaa,[a,Z0]) 

o State: q0q_0q0 
o Input: abbaaabbaaabbaa 
o Stack: [a,Z0][a, Z_0][a,Z0] 

3. After reading the second aaa: 
(q0,bbaa,[a,a,Z0])(q_0, bbaa, [a, a, Z_0])(q0,bbaa,[a,a,Z0]) 

o State: q0q_0q0 
o Input: bbaabbaabbaa 
o Stack: [a,a,Z0][a, a, Z_0][a,a,Z0] 

4. After reading the first bbb: 
(q0,baa,[a,a,b,Z0])(q_0, baa, [a, a, b, Z_0])(q0,baa,[a,a,b,Z0]) 

o State: q0q_0q0 
o Input: baabaabaa 
o Stack: [a,a,b,Z0][a, a, b, Z_0][a,a,b,Z0] 

5. After reading the second bbb: 
(q0,aa,[a,a,b,b,Z0])(q_0, aa, [a, a, b, b, Z_0])(q0,aa,[a,a,b,b,Z0]) 

o State: q0q_0q0 
o Input: aaaaaa 
o Stack: [a,a,b,b,Z0][a, a, b, b, Z_0][a,a,b,b,Z0] 
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6. Transition to q1q_1q1 (start reading second half): 
(q1,aa,[a,a,b,b,Z0])(q_1, aa, [a, a, b, b, Z_0])(q1,aa,[a,a,b,b,Z0]) 

o State: q1q_1q1 
o Input: aaaaaa 
o Stack: [a,a,b,b,Z0][a, a, b, b, Z_0][a,a,b,b,Z0] 

7. After reading the first aaa of second half: 
(q1,a,[a,b,b,Z0])(q_1, a, [a, b, b, Z_0])(q1,a,[a,b,b,Z0]) 

o State: q1q_1q1 
o Input: aaa 
o Stack: [a,b,b,Z0][a, b, b, Z_0][a,b,b,Z0] 

8. After reading the second aaa: 
(q1,ϵ,[b,b,Z0])(q_1, \epsilon, [b, b, Z_0])(q1,ϵ,[b,b,Z0]) 

o State: q1q_1q1 
o Input: ϵ\epsilonϵ 
o Stack: [b,b,Z0][b, b, Z_0][b,b,Z0] 

9. After reading the first bbb: 
(q1,ϵ,[b,Z0])(q_1, \epsilon, [b, Z_0])(q1,ϵ,[b,Z0]) 

o State: q1q_1q1 
o Input: ϵ\epsilonϵ 
o Stack: [b,Z0][b, Z_0][b,Z0] 

10. After reading the second bbb: 
(qf,ϵ,[Z0])(q_f, \epsilon, [Z_0])(qf,ϵ,[Z0]) 

o State: qfq_fqf 
o Input: ϵ\epsilonϵ 
o Stack: [Z0][Z_0][Z0] 

Thus, the final ID shows that the PDA has accepted the string. 
1.(b) Convert the following CFG to PDA and give the procedure for the same. 

SaABB|aAA 
AaBB|a 
BbBB|A 
Ca 
 

  Initialization: Start with the initial stack symbol Z0Z_0Z0. 
δ(q0,ϵ,Z0)=(q0,S)\delta(q_0, \epsilon, Z_0) = (q_0, S)δ(q0,ϵ,Z0)=(q0,S) 

  For S→aABBS \to aABBS→aABB: 
δ(q0,ϵ,S)=(q0,aABB)\delta(q_0, \epsilon, S) = (q_0, aABB)δ(q0,ϵ,S)=(q0,aABB) 

  For S→aAAS \to aAAS→aAA: 
δ(q0,ϵ,S)=(q0,aAA)\delta(q_0, \epsilon, S) = (q_0, aAA)δ(q0,ϵ,S)=(q0,aAA) 

  For A→aBBA \to aBBA→aBB: 
δ(q0,ϵ,A)=(q0,aBB)\delta(q_0, \epsilon, A) = (q_0, aBB)δ(q0,ϵ,A)=(q0,aBB) 

  For A→aA \to aA→a: 
δ(q0,ϵ,A)=(q0,a)\delta(q_0, \epsilon, A) = (q_0, a)δ(q0,ϵ,A)=(q0,a) 

  For B→bBBB \to bBBB→bBB: 
δ(q0,ϵ,B)=(q0,bBB)\delta(q_0, \epsilon, B) = (q_0, bBB)δ(q0,ϵ,B)=(q0,bBB) 

  For B→AB \to AB→A: 
δ(q0,ϵ,B)=(q0,A)\delta(q_0, \epsilon, B) = (q_0, A)δ(q0,ϵ,B)=(q0,A) 

  For C→aC \to aC→a: 
δ(q0,ϵ,C)=(q0,a)\delta(q_0, \epsilon, C) = (q_0, a)δ(q0,ϵ,C)=(q0,a) 
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Define CFG and CNF. Convert the given CFG to CNF 

SABC|BaB 

AaA|BaC|aaa 

BbBb|a|D 

CCA|AC 

Dϵ 
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Context-Free Grammar (CFG) 

A Context-Free Grammar (CFG) is a formal grammar where every production 

rule is of the form: 

A→γA \to \gammaA→γ 

where AAA is a non-terminal symbol and γ\gammaγ is a string of terminals and/or 

non-terminals. In other words, the left-hand side of every production consists of a 

single non-terminal, and the right-hand side can be a string of terminals, non-

terminals, or an empty string (denoted ϵ\epsilonϵ). 

A CFG is used to define the syntax of programming languages, natural languages, 

and other formal languages. 

Chomsky Normal Form (CNF) 

A Context-Free Grammar (CFG) is in Chomsky Normal Form (CNF) if all of 

its production rules satisfy one of the following conditions: 

1. A → BC, where AAA, BBB, and CCC are non-terminal symbols, and BBB 

and CCC are not the start symbol. 

2. A → a, where AAA is a non-terminal symbol, and aaa is a terminal symbol. 

3. A → \epsilon, where AAA is the start symbol and the production is allowed 

only if the language generated by the grammar includes the empty string. 

In CNF, all productions must either have two non-terminals on the right-hand side 

or a single terminal symbol. 

Converting CFG to CNF 

To convert a CFG to CNF, the following steps are typically followed: 

1. Eliminate ε-productions (productions of the form A→ϵA \to \epsilonA→ϵ, 

except for the start symbol if it can derive the empty string). 

2. Eliminate unit productions (productions of the form A→BA \to BA→B, 

where both AAA and BBB are non-terminals). 

3. Eliminate useless symbols (symbols that do not derive any terminal string). 

4. Convert all productions into binary form (i.e., ensure that every 

production is either of the form A→BCA \to BCA→BC or A→aA \to 

aA→a, where aaa is a terminal). 

 

 

 

 

 
3(a) State and prove pumping Lemma for context free languages. 

The Pumping Lemma for Context-Free Languages is a property that all context-

free languages must satisfy. It is used primarily to prove that certain languages are 

not context-free by showing they do not meet this property. 

Statement of the Pumping Lemma for CFLs: 

If a language LLL is context-free, then there exists a pumping length ppp such that 

any string w∈Lw \in Lw∈L with ∣w∣≥p|w| \geq p∣w∣≥p can be decomposed into five 

parts: 

w=uvxyzw = uvxyzw=uvxyz 

such that: 

1. ∣vxy∣≤p|vxy| \leq p∣vxy∣≤p (The middle portion is of limited length.) 

2. ∣vy∣≥1|vy| \geq 1∣vy∣≥1 (The repeated parts are not empty.) 

3. For all k≥0k \geq 0k≥0, the string u(vk)x(yk)z∈Lu(v^k)x(y^k)z \in 

Lu(vk)x(yk)z∈L. (The string remains in the language when the repeating 

parts are pumped.) 

 
Proof of the Pumping Lemma for CFLs: 

1. Consider a context-free language LLL and its corresponding context-free 
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grammar GGG. 

2. Suppose GGG has nnn non-terminal symbols. 

3. Let p=2np = 2^np=2n. This is the pumping length. 

4. Consider any string w∈Lw \in Lw∈L with ∣w∣≥p|w| \geq p∣w∣≥p. The parse 

tree for www has a height of at least n+1n+1n+1 due to the pigeonhole 

principle, since there are more symbols in the string than non-terminals in 

the grammar. 

5. By the pigeonhole principle, some non-terminal symbol must appear more 

than once along a path from the root to a leaf in the parse tree. 

6. Let this repeated non-terminal be AAA. Consider the substring generated by 

AAA on the first and second occurrences. 

7. Decompose w=uvxyzw = uvxyzw=uvxyz, where: 

o vvv and yyy are the substrings derived from repeated occurrences of 

AAA. 

o xxx is the part between these substrings. 

8. Since the grammar is context-free, replacing the repeated occurrences of 

AAA by producing more or fewer copies still generates valid strings in 

LLL. 

9. Thus, for any integer kkk, the string u(vk)x(yk)z∈Lu(v^k)x(y^k)z \in 

Lu(vk)x(yk)z∈L. 

This proves the Pumping Lemma for CFLs. 
3.(b) Prove that language L={anbncn  |n>=1} is not context free. 

 

1. Assume LLL is context-free. 

2. Let the pumping length be ppp. 

3. Consider the string w=apbpcpw = a^p b^p c^pw=apbpcp. 

4. Decompose w=uvxyzw = uvxyzw=uvxyz, where ∣vxy∣≤p|vxy| \leq p∣vxy∣≤p 

and ∣vy∣≥1|vy| \geq 1∣vy∣≥1. 

5. The substring vxyvxyvxy can contain symbols from at most two of the three 

blocks apa^pap, bpb^pbp, and cpc^pcp, because its length is at most ppp. 

6. Pumping vvv and yyy will unbalance the counts of at least two symbols, 

causing the string to fall out of the language. 

This contradicts the Pumping Lemma, so LLL is not context-free 
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Construct Turing Machine to accept the language L={a2nbn |n>=1}.Give the 

transition table as well as Transition diagram of TM obtained. 
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5 Write a short notes on: 

i) Turing Machine and its working 

Turing Machine and Its Working 

A Turing Machine (TM) is a theoretical computational model that defines an 

abstract machine capable of simulating any computer algorithm. It was introduced 

by Alan Turing in 1936 and serves as a foundation for the theory of computation. 

 
Components of a Turing Machine: 

1. Tape: An infinite strip of cells, each capable of holding a symbol from a 

finite alphabet. 

2. Head: A read/write head that can move left or right along the tape. 

3. States: A finite set of states, including a start state and one or more 

accepting or rejecting states. 

4. Alphabet: A set of symbols, including a special blank symbol (usually 

denoted by ‘␣’). 

5. Transition Function: A set of rules that define how the machine transitions 

between states based on the current symbol and state. 

 
Working of a Turing Machine: 

1. Initialization: The machine starts in the initial state with the tape 

containing the input string, and the head positioned at the first symbol. 

2. Reading and Writing: 

o The head reads the current symbol on the tape. 

o Based on the symbol and the current state, the machine consults its 

transition function. 

3. Transition: 
o The machine may: 

 Write a new symbol on the current tape cell. 

 Move the head left or right by one cell. 

 Change to a new state. 

4. Halting: 

o The machine halts when it reaches an accepting or rejecting state or 

if no transition is defined for the current configuration. 
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ii) Multi tape Turing Machine 

 

 

A Multi-Tape Turing Machine is an extension of the standard Turing Machine 

that uses multiple tapes, each with its own read/write head. It is used to improve 

computational efficiency and simplify the design of Turing Machines for complex 

problems. 

 
Components of a Multi-Tape Turing Machine: 

1. Tapes: There are multiple infinite tapes, each capable of storing symbols. 

2. Heads: Each tape has its own read/write head. 

3. States: A finite set of states, including start, accept, and reject states. 

4. Alphabet: A set of symbols, including a blank symbol. 

5. Transition Function: The machine reads symbols from all tapes 

simultaneously and defines transitions based on these symbols and the 

current state. 

 
Working of a Multi-Tape Turing Machine: 

1. Initialization: The first tape holds the input string, while other tapes are 

blank. 

2. Reading and Writing: 

o The heads read symbols from all tapes simultaneously. 

o Based on the current state and symbols read, the machine: 

 Writes symbols on any or all tapes. 

 Moves each head independently (left, right, or stationary). 

 Changes its current state. 

3. Halting: The machine halts when it reaches an accepting or rejecting state. 

 
Advantages: 

 Faster Computation: Simulates complex computations more efficiently. 

 Simplified Design: Easier to design machines for tasks like copying, 

sorting, and parsing. 

 Theoretical Power: Equivalent in computational power to a single-tape 

Turing Machine but more time-efficient. 

 

 



 
 

6 Write a short notes on: 

i) Recursive Language 

 

A Recursive Language is a type of formal language in the Chomsky hierarchy that 

is decidable by a Turing Machine. This means there exists a Turing Machine that 

can always halt and determine whether a given input string belongs to the language. 

 

Definition: 

A language L⊆Σ∗L \subseteq \Sigma^*L⊆Σ∗ is recursive if there exists a Turing 

Machine MMM such that: 

1. MMM halts and accepts if w∈Lw \in Lw∈L. 

2. MMM halts and rejects if w∉Lw \notin Lw∈/L. 

 

Key Characteristics: 

1. Decidability: Recursive languages are also called decidable languages 

because their membership problem can be solved by a Turing Machine that 

always halts. 

2. Closure Properties: Recursive languages are closed under: 

o Union 

o Intersection 

o Complementation 

o Concatenation 

o Kleene star 

 

ii) Universal Language 

 

Universal Language 

The Universal Language (L_U) refers to a formal language associated with the 

encoding of Turing Machines and their inputs. It represents the set of strings that 

encode a Turing Machine and an input string, where the Turing Machine accepts 

the input. 

 

Definition: 

The Universal Language LUL_ULU is defined as: 

LU={⟨M,w⟩∣M is a Turing Machine and M accepts w}L_U = \{ \langle M, w 

\rangle \mid M \text{ is a Turing Machine and } M \text{ accepts } w \}LU

={⟨M,w⟩∣M is a Turing Machine and M accepts w} 
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Here, ⟨M,w⟩\langle M, w \rangle⟨M,w⟩ is an encoding of the Turing Machine 

MMM and the input string www. 

 

Key Properties: 

1. Recursively Enumerable: 

o The Universal Language is recursively enumerable (RE) but not 

recursive. 

o A Turing Machine can simulate MMM on www; if MMM accepts 

www, the universal Turing Machine also accepts the encoded pair. 

2. Non-Decidability: 

o The Universal Language is not decidable because determining 

whether an arbitrary Turing Machine accepts an input is equivalent 

to solving the Halting Problem, which is undecidable. 

3. Closure Properties: 

o It is closed under union and intersection but not under 

complementation. 
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