
 1 Illustrate KMP algorithm to find a string pattern with an example.

String: abcdabcabcabbabcbcabc

Pattern String:abcabbabc

Answer:

Knuth-Morris-Pratt (KMP) string matching algorithm runs in O(m+n) time to find all occurrences of pattern

P in S. In KMP algorithm, a preprocessing is done in pattern string P and an array of length m is

calculated.

The basic idea behind KMP’s algorithm is: whenever we detect a mismatch (after some matches), we

already know some of the characters in the text of the next window. We take advantage of this information

to avoid matching the characters that we know will anyway match.

Unlike Brute-Force/Naïve algorithm, where we slide the pattern by one and compare all characters at

each shift, we use a value from lps[] to decide the next characters to be matched. The idea is to not

match a character that we know will anyway match.

It uses a preprocessed table called "Prefix Table" or “Failure Table” to skip characters comparison while

matching.

How to use failure[] to decide next positions (or to know a number of characters to be skipped)?

We start comparison of pat[j] with j = 0 with characters of current window of text.

We keep matching characters str[i] and pat[j] and keep incrementing i and j while pat[j] and str[i]

keep matching.

When we see a mismatch

We know that characters pat[0..j-1] match with str[i-j…i-1] (Note that j starts with 0 and increment it only

when there is a match).

We also know (from above definition) that failure[j-1] is count of characters of pat[0…j-1] that are both

proper prefix and suffix.

From above two points, we can conclude that we do not need to match these failure[j-1] characters with

str[i-j…i-1] because we know that these characters will anyway match.
void fail(char *pat, int failure[])

{

a b C a b b a b c

-1 -1 -1 0 1 -1 0 1 2

 int i,j;

 int n = strlen(pat);

 failure[0] = -1;

 for (j=1; j<n; j++)

 {

 i = failure[j-1];

 while ((pat[j] != pat[i+1]) && (i>= 0))

 i= failure[i];

 if (pat[j] == pat[i+1])

 failure[j] = i+1;

 else

 failure[j] = -1;

 }

}

DSA – IAT 1 Answer Key

abcdabcabcabbabcbcabc

abcabbabc
 abcabbabc

 abcabbabc
2 Convert the infix expression a/b – c+ d * e – a * c into postfix expression. Write a function to evaluate that

postfix expression and trace that for given data a=6, b=3, c = 1, d = 2, e =4.

Answer:

 Infix to postfix : ab/c-de*+ac*- (With tracing)

 POSTFIX EVALUATION : 63/1-24*+61*- = 3 (with tracing and function)

3a What is structure? How it is different from array? Explain different types of structure declaration with

examples and give difference between Union and Structure.

Answer:

Data are a collection of facts or simply values or sets of values.

Data structure is representation of the logical or mathematical model of a particular organization of data.

We can declare a structure using “struct” keyword. A structure must be declared first before using it just

like all other data type. Structure can be declared by two ways.

Tagged Declaration

Typedef Declaration

Typedef:
typedef struct
{
data-type var-name1;
data-type var-name2;
:
data-type var-nameN;

}identifier; // global declaration

Tagged:
struct tag_name
{
data-type var-name1;
data-type var-name2;
:
data-type var-nameN;
};

3b Explain dynamic memory allocation functions in details

Answer:

Malloc

Calloc

Realloc

Free

With syntax and examples

4

 Write the function to perform the following on SLL: Insertion and deletion from front and

end.

#include <stdio.h>

#include <stdlib.h>

// Definition of a node

struct Node {

 int data;

 struct Node* next;

};

// Global head pointer

struct Node* head = NULL;

// Function to insert at the front

void insertFront(int value) {

 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 newNode->next = head;

 head = newNode;

 printf("Inserted %d at the front.\n", value);

}

// Function to insert at the end

void insertEnd(int value) {

 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;

 newNode->next = NULL;

 if (head == NULL) { // If the list is empty

 head = newNode;

 printf("Inserted %d at the end.\n", value);

 return;

 }

 struct Node* temp = head;

 while (temp->next != NULL) { // Traverse to the end of the list

 temp = temp->next;

 }

 temp->next = newNode;

 printf("Inserted %d at the end.\n", value);

}

// Function to delete from the front

void deleteFront() {

 if (head == NULL) {

 printf("List is empty. Cannot delete from front.\n");

 return;

 }

 struct Node* temp = head;

 head = head->next;

 printf("Deleted %d from the front.\n", temp->data);

 free(temp);

}

// Function to delete from the end

void deleteEnd() {

 if (head == NULL) {

 printf("List is empty. Cannot delete from end.\n");

 return;

 }

 if (head->next == NULL) { // If the list has only one node

 printf("Deleted %d from the end.\n", head->data);

 free(head);

 head = NULL;

 return;

 }

 struct Node* temp = head;

 struct Node* prev = NULL;

 while (temp->next != NULL) { // Traverse to the end of the list

 prev = temp;

 temp = temp->next;

 }

 prev->next = NULL; // Disconnect the last node

 printf("Deleted %d from the end.\n", temp->data);

 free(temp);

}

// Function to display the list

void displayList() {

 if (head == NULL) {

 printf("List is empty.\n");

 return;

 }

 struct Node* temp = head;

 printf("List elements: ");

 while (temp != NULL) {

 printf("%d -> ", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

}

// Main function to test the linked list operations

int main() {

 insertFront(10);

 insertFront(20);

 insertEnd(30);

 insertEnd(40);

 displayList();

 deleteFront();

 displayList();

 deleteEnd();

 displayList();

 deleteEnd();

 deleteFront();

 displayList();

 return 0;

}
5 Explain Sparse matrices. Implement the fast transpose algorithm for it.

Answer:

5 8 8

1 0 9

2 1 6

2 4 6

3 2 5

5 0 4

6 1 1

6 2 1

6 3 3

Sparse matrix: Fast transpose:

5 8 8

0 1 9

0 5 4

1 2 6

1 6 1

2 3 5

2 6 1

3 6 3

4 2 6

void transpose(int trip1[][3],int trip2[][3])

{

 int x,y,z,n;

 trip2[0][0] = trip1[0][1];

 trip2[0][1] = trip1[0][0];

 trip2[0][2] = trip1[0][2];

 z=1;

 n=trip1[0][2];

 for(x=0;x<trip1[0][1];x++)

 for(y=1;y<=n;y++)

 /*if a column number of current triple==x

 then insert the current triple in b2 */

 if(x==trip1[y][1])

 {

 trip2[z][0]=x;

 trip2[z][1]=trip1[y][0];

 trip2[z][2]=trip1[y][2];

 z++;

 }

}

5B

Preorder: 60,41,16,25,53,46,42,55,74,65,63,62,64,70

Inorder: 16,25,41,42,46,53,55,60,62,63,64,65,70,74

Post order: 25,16,42,46,55,53,41,62,64,63,70,65,74,60

6

#include <stdio.h>

#define SIZE 5 // Define the size of the circular queue

int queue[SIZE];

int front = -1;

int rear = -1;

// Function to insert an element into the circular queue

void QINSERT(int element) {

 if ((rear + 1) % SIZE == front) {

 printf("Queue Overflow! Cannot insert %d\n", element);

 return;

 } else if (front == -1) { // First insertion

 front = 0;

 rear = 0;

 } else {

 rear = (rear + 1) % SIZE; // Increment rear circularly

 }

 queue[rear] = element;

 printf("Inserted %d into the queue.\n", element);

}

// Function to delete an element from the circular queue

int QDELETE() {

 if (front == -1) {

 printf("Queue Underflow! Cannot delete.\n");

 return -1;

 }

 int deletedElement = queue[front];

 if (front == rear) { // Queue becomes empty after deletion

 front = -1;

 rear = -1;

 } else {

 front = (front + 1) % SIZE; // Increment front circularly

 }

 printf("Deleted %d from the queue.\n", deletedElement);

 return deletedElement;

}

// Function to display the elements of the circular queue

void Display() {

 if (front == -1) {

 printf("Queue is empty!\n");

 return;

 }

 printf("Queue elements: ");

 int i = front;

 while (1) {

 printf("%d ", queue[i]);

 if (i == rear) break;

 i = (i + 1) % SIZE;

 }

 printf("\n");

}

// Main function to test the circular queue

int main() {

 QINSERT(10);

 QINSERT(20);

 QINSERT(30);

 QINSERT(40);

 QINSERT(50); // Queue is now full

 Display();

 QDELETE();

 QDELETE();

 Display();

 QINSERT(60);

 QINSERT(70);

 Display();

 QDELETE();

 Display();

 return 0;

}

