

 USN

Internal Assessment Test 1 – November 2024

Sub: Object Oriented Programming with JAVA Sub Code: BCS306A Branch:
AIDS &

CSE(AIDS)

Date: 07/11/2024 Duration: 90 minutes Max Marks: 50 Sem/Sec: III -A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

 What are the primitive data types in java programming language?

 Primitive data types - includes byte , short , int , long , float , double , boolean and

char.

4 1
L1

b

 List and explain different jump statements used in java with an example for

each

In Java, jump statements are used to transfer control to another part of the program.

These include break, continue, and return.

Example

The break statement is used to exit a loop or terminate a switch statement

prematurely.

public class BreakExample {

 public static void main(String[] args) {

 for (int i = 1; i <= 5; i++) {

 if (i == 3) {

 break; // Exits the loop when i equals 3

 }

 System.out.println("i: " + i);

 }

 }

}

The continue statement skips the current iteration of a loop and proceeds to the next

iteration.

Example

public class ContinueExample {

 public static void main(String[] args) {

 for (int i = 1; i <= 5; i++) {

 if (i == 3) {

 continue; // Skips the iteration when i equals 3

 }

 System.out.println("i: " + i);

 }

 }

}

The return statement is used to exit from a method and optionally return a

value.

public class ReturnExample {

 public static int square(int num) {

 return num * num; // Returns the square of the number

 }

 public static void main(String[] args) {

 int result = square(4);

 System.out.println("Square of 4: " + result);

 }

}

6 1 L2

2

a

 Explain the scope and lifetime of the variable with an example

Scope

The scope of a variable determines where in the program the variable can be accessed.

It depends on where the variable is declared.

Types of Variable Scopes:

1. Local Scope: Variables declared inside a method, constructor, or block are

local to that block.

2. Instance Scope: Instance variables are declared inside a class but outside any

method. They belong to the object.

3. Class (Static) Scope: Static variables are declared with the static keyword and

belong to the class, not individual objects.

Lifetime

The lifetime of a variable refers to how long the variable stays in memory:

• Local variables exist until the method or block in which they are declared

finishes execution.

• Instance variables exist as long as the object they belong to is in memory.

• Static variables exist for the lifetime of the program (or the class in memory).

public class LocalVariableExample {

 public void display() {

 int number = 10; // Local variable

 System.out.println("Local variable: " + number);

 }

 public static void main(String[] args) {

 LocalVariableExample example = new LocalVariableExample();

 example.display();

 // System.out.println(number); // Error: Cannot access local variable outside its

method

 }

}

4 1 L2

b

 Differentiate between type conversion and type casting

Type Conversion

Type conversion is an automatic process where the Java compiler converts one data

type into another.

Characteristics:

• Automatic (Implicit): Performed by the compiler without explicit

programmer intervention.

• Safe Conversion: Converts from a smaller data type to a larger data type

(widening conversion).

• No Data Loss: As smaller data types fit into larger data types, there’s no risk

of precision loss.

Example (Type Conversion):

public class TypeConversionExample {

 public static void main(String[] args) {

 int intNumber = 100;

 double doubleNumber = intNumber; // Automatic conversion from int to double

 System.out.println("Integer: " + intNumber);

 System.out.println("Converted to double: " + doubleNumber);

 }

}

Type Casting

Type casting is an explicit process where the programmer forces a conversion from

one data type to another.

Characteristics:

• Explicit (Manual): Requires the programmer to specify the target data type.

• Risk of Data Loss: Common when converting from a larger data type to a

6 1 L2

smaller data type (narrowing conversion).

• Potential for Errors: May cause loss of precision or overflow issues.

public class TypeCastingExample {

 public static void main(String[] args) {

 double doubleNumber = 100.99;

 int intNumber = (int) doubleNumber; // Manual casting from double to int

 System.out.println("Double: " + doubleNumber);

 System.out.println("Casted to integer: " + intNumber);

 }

}

3
a

Compare and contrast method overloading and method overriding with a

suitable example.

Method Overloading

Method overloading allows a class to define multiple methods with the same name

but with different parameter lists.

Characteristics:

• Occurs within the same class.

• Distinguished by the number or type of parameters.

• Compile-time polymorphism: The method to execute is determined during

compilation.

• Return type can differ, but it is not sufficient to distinguish methods (must

differ in parameters).

Example (Method Overloading):

public class MethodOverloadingExample {

 // Overloaded methods

 public void display(int num) {

 System.out.println("Displaying number: " + num);

 }

 public void display(String text) {

 System.out.println("Displaying text: " + text);

 }

 public void display(int num, String text) {

 System.out.println("Displaying number and text: " + num + ", " + text);

 }

 public static void main(String[] args) {

 MethodOverloadingExample example = new MethodOverloadingExample();

 example.display(10); // Calls the method with int parameter

 example.display("Hello"); // Calls the method with String parameter

 example.display(20, "World"); // Calls the method with int and String

parameters

 }

}

Method Overriding

Method overriding allows a subclass to provide a specific implementation of a

method that is already defined in its superclass.

Characteristics:

10 2 L2

• Occurs across different classes in an inheritance hierarchy (superclass and

subclass).

• The overriding method must have the same name, return type, and

parameters as the method in the superclass.

• Runtime polymorphism: The method to execute is determined during

runtime.

• Requires the use of the @Override annotation (optional but recommended for

clarity).

• Access modifier of the overriding method cannot reduce the visibility of the

method in the superclass.

Example (Method Overriding):

class Parent {

 public void show() {

 System.out.println("This is the Parent class method.");

 }

}

class Child extends Parent {

 @Override

 public void show() {

 System.out.println("This is the Child class method.");

 }

}

public class MethodOverridingExample {

 public static void main(String[] args) {

 Parent obj1 = new Parent();

 obj1.show(); // Calls the method in the Parent class

 Parent obj2 = new Child();

 obj2.show(); // Calls the overridden method in the Child class (runtime

polymorphism)

 }

}

4

a

 Write a note on the following: Garbage collection b) this keyword

Garbage Collection in Java

Garbage Collection (GC) in Java is the process of automatically identifying and

reclaiming memory that is no longer used by the application. This helps manage

memory efficiently and prevents memory leaks.

this keyword

The this keyword in Java is a reference variable that refers to the current object of

a class. It is used primarily within an instance method or a constructor to eliminate

ambiguity between instance variables and parameters or to invoke other methods or

constructors in the class.

4 2 L2

b

Discuss the following terms with an example:

a) Static b) final c) Abstract methods d) Abstract classes
6 2 L2

Static: In Java, the static keyword is used to indicate that a particular member

(variable, method, block, or nested class) belongs to the class rather than any specific

instance of the class. This means that the member can be accessed without creating

an object of the class.

Final: In Java, the final keyword is a modifier that can be applied to variables,

methods, and classes to enforce specific behaviors. It is used to declare constants,

prevent method overriding, or inheritance, ensuring immutability and stability in

code.

Abstract methods: An abstract method is a method declared in an abstract class or

interface that does not have a body (implementation). It only provides the method

signature (name, return type, and parameters), and the implementation must be

provided by a subclass.

Abstract methods are used to enforce that certain behaviors must be implemented in

the subclasses, making them a key feature in achieving polymorphism.

Abstract classes: An abstract class in Java is a class that is declared using the

abstract keyword. It serves as a blueprint for other classes and cannot be instantiated

directly. Abstract classes are used to define common properties and behaviors for a

group of related classes while leaving specific details to be implemented by

subclasses.

5
a

Define constructors in Java.

Explain different types of constructors in Java with an example for each.

In Java, a constructor is a special type of method that is used to initialize objects

when they are created. It is called automatically when an object of a class is

instantiated. Constructors have the same name as the class and do not have a return

type.

The main purpose of a constructor is to initialize the object's state (i.e., its instance

variables).

Types of Constructors in Java:

Default Constructor

No-argument Constructor

Parameterized Constructor

Copy Constructor

Constructor Overloading

10

2 L1

6 a

 Explain usage of super keyword in Java with suitable examples

In Java, the super keyword is used to refer to the immediate parent class

(superclass) of the current object. It has several important uses, including:

1. Accessing Parent Class Methods

2. Accessing Parent Class Constructors

6 3 L3

3. Accessing Parent Class Variables

4. Invoking Parent Class Constructor in Constructor Chaining

 b

 Explain how variables in interfaces are used. Give example.

 All variables declared in an interface are implicitly public, static, and final. This

means:

o public: The variable is accessible from outside the interface.

o static: The variable belongs to the interface, not to instances of

implementing classes. It can be accessed using the interface name

(i.e., InterfaceName.variableName).

o final: The variable is a constant and cannot be modified once assigned

a value.

Cannot be modified:

• Since interface variables are final, they cannot be reassigned after

initialization.

 Initialization:

• Interface variables must be initialized at the time of declaration since they are

final (constants).

4 3 L3

CI CCI HoD

