

Internal Assessment Test 1 - Nov 2024

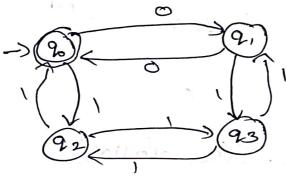
Su	ıb:	Theory Of Computation					Sub Code:	BCS503	Branc	ch: AIDS & CSE(DS)			
Dat	e:	08/11/2024	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	V -A, B &	C		OBE	OBE	
<u>A</u> 1	Answer any FIVE FULL Questions											RBT	
1	a	Design DFA which accepts set of all strings contains 0101 as substring over an alphabet $\{0,1\}$ and process the string 10101101								5	CO1	L2	
	b	Prove "If the language L is recognized by a NFA then there exist a language L' which is recognized by a DFA".								5	CO1	L3	
2	a	Design a NFA that accepts set of all strings containing even no. of 1's and even no. of 0's. over an alphabet $\{0,1\}$.								5	CO1	L2	
	b	Construct DFA for the language over {a,b} that does not contain substring baba.								5	CO1	L2	
3		Find the equivalent NFA for the NFA-ε given below.							10	C01	L3		

4	Convert the following Regular Expression into Finite Automata i) (00+11) * 110 ii) ((ab+bb)*aba)*	10	CO2	L3
5	Find the regular expression for the automata given below using State elimination Method.	10	CO2	L3
6	Minimize the following DFA using Myhill-Nerode theorem. Start q0 q1 q2 q4 0.1	10	CO2	L3

Internal Assemment - I

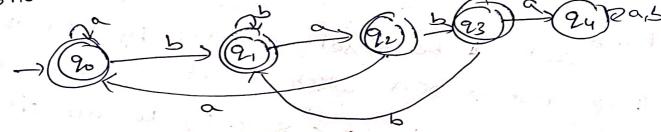
contains old as substring 1. a)

procen: 10101101


$$8(90, 101010) = 8(90, 010101)$$

 $= 8(91, 101101)$
 $= 8(92, 01101)$
 $= 8(93, 1101)$
 $= 8(94, 101)$
 $= 8(94, 01)$
 $= 8(94, 01)$
 $= 8(94, 01)$

L be a set accepted by NFA, then \$ 1. b) Let there exist a DFA which accepts i.e L(M)=L(M)) P7100t: Let M1= (Q, E, 8, 90, F) be an NFA accepting L, we constauct DFA MI as follows M'= (Q', 2, 8', 20', F')

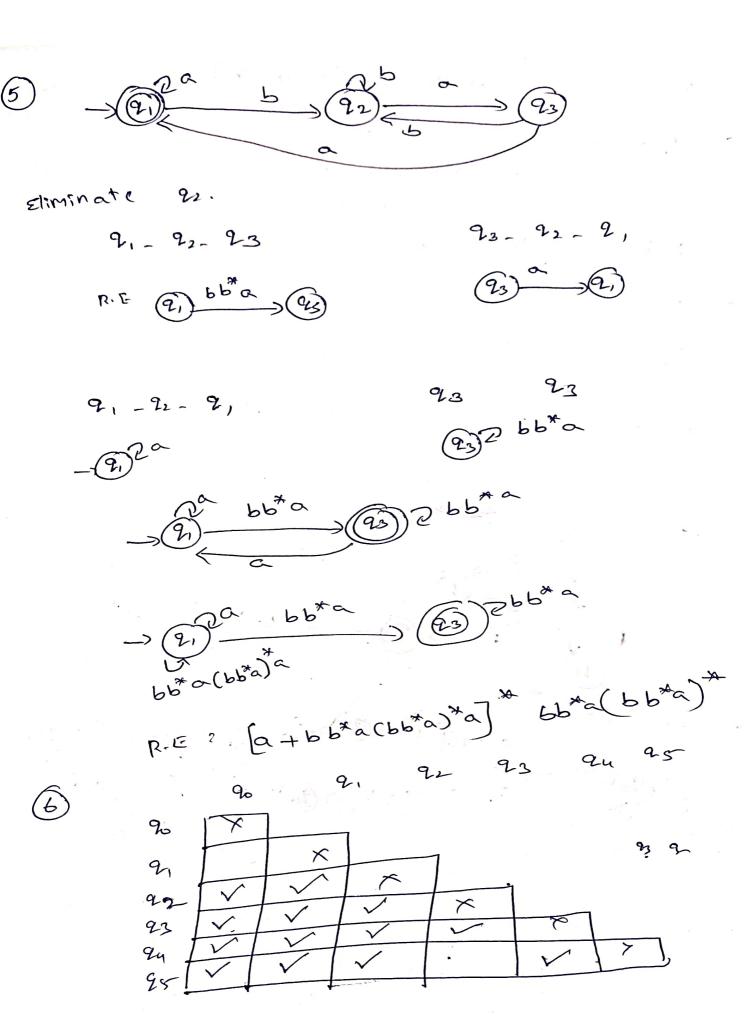

(111) F is set of all subsets of a containing an elements of F.

(iv)
$$8(4, 92, 93), a) = 8(2, a) \cup 8(92, a) \cdots$$

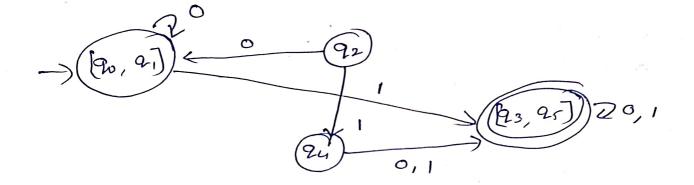
equivalently $8(9, 92, -93), a) = [P_1 - P_3]$
ight $8(92, -93), a) = [P_1, P_2 - P_3]$

2. a.

docsnot contain babe


3. a) NFA-E tO NFA

$$e$$
-closure $(90) = \{90, 9, 92\}$


11 $(91)^2 \{92\}$

11 $(92)^2 \{92\}$

$$\frac{1}{5}(q_{0}, b) = \frac{1}{5}(q_{0}, q_{1}, q_{2}) = \frac{1}{5}(q_{1}, q_{1}, q_{2}) = \frac{1}{5}(q_{1}, q_$$

$$(95,93)$$

 $(95,0) = 95$
 $(93,0) = 95$
 $(95,1) = 95$
 $(93,1) = 95$

ţ