Internal Assessment Test 2 — November 2024

Sub: Data Visualization Cosduep 21AD71 | Branch: | AInDS
Date: 19/11/20 Duratlon. .90 Ma>f 50 Sem VII OBE
24 | minutes | Marks:
Answer any FIVE Questions MARKS | CO | RBT
Explain the following with respect to Matplotlib along with examples.
1. Labels
2. Titles
1 |a 3. Text [10] CO3 | L1
4. Annotations
5. Legends
2 | a [Explain the different geospatial visualizations with examples? [10] CO4 | L2
3 a [Explain GeoJSON format. [4] coa | L2
b (Why is geoplotlib preferred over matplotlib for geospatial data visualization? [6]
Explain how univariate and bivariate distributions are visualized in seaborn
a With examples? [6] COo3 L2
4 Plot the following in matplotlib:
b 1. Bubble plot
2. Boxplot [4] L3
5 a [Explain basic image operations of matplotlib? [6] L2
b |How to create & close figures in matplotlib? [4] COo3 | L1
6 |2 Explain seaborn figure styles. [5] cosz | L2
b [Explain the parameters controlling the scale of the plot elements. [5]
Cl CCl HOD

AnNswers:

1.

Labels

Matplotlib provides a few label functions that we can use for setting labels to the x- and
y-axes. The plt.xlabel () and plt.ylabel () functions are used to set the label for
the current axes. The set_xlabel () and set_ylabel () functions are used to set the
label for specified axes.

Example:

ax.set xlabel ('X Label')
ax.set ylabel ('Y Label')

Titles

A title describes a particular chart/graph. The titles are placed above the axes in the
center, left edge, or right edge. There are two options for titles — you can either set
the Figure title or the title of an Axes. The suptitle () function sets the title for the
current and specified Figure. The title () function helps in setting the title for the
current and specified axes.

Example:

fig = plt.figure ()
fig.suptitle ('Suptitle', fontsize=10, fontweight='bold')

This creates a bold Figure title with a text subtitle and a font size of 10:

plt.title('Title', fontsize=16)

Text

There are two options for text - you can either add text to a Figure or text to an Axes.
The figtext (x, y, text) and text(x, y, text) functions add text at locations x
or y for a Figure.

Example:

ax.text (4, 6, 'Text in Data Coords', bbox={'facecolor': 'yellow',
'alpha':0.5, '"pad':10})

Annotations

Annotations are used to annotate some features of the plot. In annotations, there are two locations
to consider: the annotated location, xy, and the location of the annotation, text xytext. It is useful
to specify the parameter arrow props, which results in an arrow pointing to the annotated location.

Example:

ax.annotate ('Example of Annotate', xy=(4,2), xytext=(8,4),
arrowprops=dict (facecolor="green', shrink=0.05))

This creates a green arrow pointing to the data coordinates (4, 2) with the text Example
of Annotate at data coordinates (8, 4):

Suptitle
10
8 -
6 - Text in Data Coords
o
L
]
-
” 4 Example of Arjnotate
2 [
0 L) T I L)
0 2 - 6 8 10
X Label

Figure 3.13: Implementation of text commands

Legends

Legend describes the content of the plot. To add a legend to your Axes, we have to
specify the 1abel parameter at the time of plot creation. Calling p1t. legend () for
the current Axes or Axes.legend () for a specific Axes will add the legend. The loc
parameter specifies the location of the legend.

Example:

plt.plot([1l, 2, 3], label="Label 1'")
plt.plot([2, 4, 3], label="Label 2'")
plt.legend()

This example is illustrated in the following diagram:

4.0 1 - Label 1

Label 2

3.5 1

3.0 4

2.5 1

2.0 1

1.5 1

1.0 1

000 025 050 0.75 1.00 1.25 1.50 1.75 2.00

Figure 3.14: Legend example

2. Voronoi tessellation, Delaunay triangulation, and choropleth plots are a few of the
geospatial visualizations.

Voronoi Tessellation

In a Voronoi tessellation, each pair of data points is separated by a line that is the same
distance from both data points. The separation creates cells that, for every given point,
marks which data point is closer. The closer the data points, the smaller the cells.

The following example shows how you can simply use the voronoi method to create
this visualization:

plotting our dataset as voronoci plot
geoplotlib.voronoi (dataset_filtered, line_color='b')
geoplotlib.set smoothing (True)

geoplotlib.show ()

Delaunay Triangulation

A Delaunay triangulation is related to Voronoi tessellation. When connecting each
data point to every other data point that shares an edge, we end up with a plot that
is triangulated. The closer the data points are to each other, the smaller the triangles
will be. This gives us a visual clue about the density of points in specific areas. When
combined with color gradients, we get insights about points of interest, which can be
compared with a heatmap:

plotting our dataset as a delaunay
geoplotlib.delaunay (dataset filtered, cmap='hot r')
geoplotlib.set smoothing (True)

gecplotlib.show ()

Choropleth Plot

This kind of geographical plot displays areas such as the states of a country in a shaded
or colored manner. The shade or color of the plot is determined by a single data point
or a set of data points. It gives an abstract view of a geographical area to visualize the
relationships and differences between the different areas. In the following code and

3.
4 The GeoJSON Format

The GeoJSON format is used to encode a variety of data structures, such as points,
lines, and polygons with a focus on geographical visualization. The format has a defined
structure that each valid file has to follow:

{

"type": "Feature",

"properties": {
"name": "Dinagat Islands"

ba

"geometry": {
"type": "Point",
"coordinates": [125.6, 10.1]

}
Each object with additional properties, for example, an ID or name attribute, is a
Feature. The properties attribute simply allows additional information to be added
to the feature. The geometry attribute holds information about the type of feature we
are working with, for example, a Point, and its specific coordinates. The coordinates
define the positions for the "waypoints" of the given type. Those coordinates define the
shape of the element to be displayed by the plotting library.

i. Matplotlib is the commonly used visualization library in python.
ii. However, Matplotlib is not designed for this task because its interfaces
are complicated and inconvenient to use.
iii. Matplotlib also restricts how geographical data can be displayed.

iv.

Vi.

Vil.

vili.

IX.

Cartopy is a Python package designed to make drawing maps for data
analysis and visualization easy.

Basemap is a great tool for creating maps using python in a simple way.
It's a matplotlib extension, so it has got all its features to create data
visualizations

The Basemap and Cartopy libraries allow you to plot on a world map, but
these packages do not support drawing on map tiles.

Maptiles are image file that represents a specific geographic area at a
particular zoom level.

Geoplotlib, on the other hand, was designed precisely for this purpose; it
not only provides map tiles but also allows for interactivity and simple
animations.

It provides a simple interface that allows access to compelling geospatial
visualizations such as histograms, point-based plots, tessellations such
as Voronoi or Delaunay, and choropleth plots.

a. Seaborn offers handy functions to examine univariate and bivariate
distributions. One possible way to look at a univariate distribution in Seaborn is
by using the distplot() function. This will draw a histogram and fit a kernel
density estimate (KDE), as illustrated in the following example:

$matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data = pd.read csv('../../Datasets/age salary hours.csv')

sns.distplot (data.loc[:, 'Age'])
plt.xlabel ("Age')
plt.ylabel ('Density"')

The result is shown in the following diagram:

0.0200

0.0175

0.0150

0.0125

0.0100

Density

0.0075

0.0050

0.0025 -

0.0000

-
-
-
-
-
-

0 20 40 60 80 100
Age

To just visualize the KDE, Seaborn provides the kdeplot () function:

sns. kdeplot (data.loc[:, 'Age'], shade=True)
plt.xlabel ("Age')
plt.ylabel ('Density"')

0.0175

0.0150

0.0125

0.0100 =

Density

0.0075

0.0050 -

0.0025

0 20 40 60 80 100

Age

Figure 4.31: KDE for a univariate distribution

Plotting Bivariate Distributions

For visualizing bivariate distributions, we will introduce three different plots. The
first two plots use the jointplot () function, which creates a multi-panel figure
that shows both the joint relationship between both variables and the corresponding
marginal distributions.

A scatter plot shows each observation as points on the x and y axes. Additionally,
a histogram for each variable is shown:

import pandas as pd

import seaborn as sns

data = pd.read csv('../../Datasets/age salary hours.csv')
sns.set (style="white")

sns.jointplot (x="Annual Salary", y="Age", data=data))

The scatter plot with marginal histograms is shown in the following diagram:

90

80

70

60

Age

50

40

30

20

0 100000 200000 300000 400000 500000 600000
Annual Salary

Figure 4.32: Scatter plot with marginal histograms

b. Bubble Plot

The plt.scatter function is used to create a bubble plot. To visualize a third or fourth
variable, the parameters s (scale) and ¢ (color) can be used.

Example:

plt.scatter(x, y, s=z*500, c=c, alpha=0.5)
plt.colorbar ()

The colorbar function adds a colorbar to the plot, which indicates the value of the
color. The result is shown in the following diagram:

-l T
o

2

-2 -1 0 1 2

Figure 3.33: Bubble plot with color bar

Box Plot

The box plot shows multiple statistical measurements. The box extends from the
lower to the upper quartile values of the data, thereby allowing us to visualize the
interquartile range. For more details regarding the plot, refer to the previous chapter.
The plt.boxplot (x) function creates a box plot.

lmportant parameters:

» x: Specifies the input data. It specifies either a 1D array for a single box, or a

sequence of arrays for multiple boxes.

* notch: (optional) If true, notches will be added to the plot to indicate the

confidence interval around the median.

* labels: (optional) Specifies the labels as a sequence.

* showfliers: (optional) By default, it is true, and outliers are plotted beyond

the caps.

* showmeans: (optional) If true, arithmetic means are shown.

Example:

plt.boxplot ([x1l, x2], labels=['A', 'B'])

The result of the preceding code is shown in the following diagram:

o}
d H
21
.
0]

|
o o}

Figure 3.27:

Box plot

Basic Image Operations
The following are the basic operations for designing an image.
Loading Images

If you encounter image formats that are not supported by Matplotlib, we recommend
using the Pillow library to load the image. In Matplotlib, loading images is part of the
image submodule. We use the alias mpimg for the submodule, as follows:

import matplotlib.image as mpimg

The mpimg. imread (fname) reads an image and returns it as a numpy . array object.
For grayscale images, the returned array has a shape (height, width), for RGB images
(height, width, 3), and for RGBA images (height, width, 4). The array values range from 0
to 255.

We can also load the image in the following manner:

img filenames = os.listdir('../../Datasets/images"')

imgs = [mpimg.imread(os.path.join('../../Datasets/images', img filename))
for img filename in img filenames]

The os.1listdir () method in Python is used to get the list of all files and directories
in the specified directory and then the os.path.join () function is used to join one or
more path components intelligently.

Saving Images

The mpimg. imsave (fname, array) saves a numpy.array object as an image file. If
the format parameter is not given, the format is deduced from the filename extension.
With the optional parameters vmin and vmax, the color limits can be set manually. For a
grayscale image, the default for the optional parameter, emap, is 'viridis'; you might
want to change it to 'gray'.

Plotting a Single Image

The plt.imshow(img) displays an image and returns an AxesImage object. For
grayscale images with shape (height, width), the image array is visualized using
a colormap. The default colormap is ‘viridis’. To actually visualize a grayscale
image, the colormap has to be set to 'gray' (that is, plt.imshow(img,
cmap='gray'). Values for grayscale, RGB, and RGBA images can be either float or
uint8, and range from [0...1] or [0...255], respectively. To manually define the
value range, the parameters vmin and vmax must be specified.

Sometimes, it might be helpful to get an insight into the color values. We can simply
add a color bar to the image plot. It is recommended to use a colormap with high
contrast—for example, jet:

plt.imshow (img, cmap='jet')
plt.colorbar ()

Another way to get insight into the image values is to plot a histogram, as shown in
the following diagram. To plot the histogram for an image array, the array has to be
flattened using numpy . ravel:

plt.hist (img.ravel (), bins=256, range=(0, 1))

Plotting Multiple Images in a Grid

To plot multiple images in a grid, we can simply use plt. subplots and plot an image
per Axes:

fig, axes = plt.subplots(l, 2)
for i in range(2):
axes[i].imshow (imgs[i])

In some situations, it would be neat to remove the ticks and add labels. axes.set
xticks ([]) and axes.set_yticks ([]) remove x-ticks and y-ticks, respectively.
axes.set xlabel ('label') adds a label:

fig, axes = plt.subplots(l, 2)

labels = ['coast', 'beach']

for i in range(2):
axes[i].imshow (imgs[i])
axes[i] .set xticks([])
axes[i] .set yticks([])
axes[i].set_xlabel (labels[i])

b.

Creating Figures

You can use plt.figure () to create a new Figure. This function returns a Figure
instance, but it is also passed to the backend. Every Figure-related command that
follows is applied to the current Figure and does not need to know the Figure instance.

By default, the Figure has a width of 6.4 inches and a height of 4.8 inches with a dpi
(dots per inch) of 100. To change the default values of the Figure, we can use the
parameters figsize and dpi.

The following code snippet shows how we can manipulate a Figure:

plt.figure (figsize=(10, 5)) #To change the width and the height
plt.figure (dpi=300) #To change the dpi

Closing Figures

Figures that are no longer used should be closed by explicitly calling p1t.close (),
which also cleans up memory efficiently.

If nothing is specified, the p1t.close () command will close the current Figure. To
close a specific Figure, you can either provide a reference to a Figure instance or
provide the Figure number. To find the number of a Figure object, we can make use of
the number attribute, as follows:

plt.gcf () .number

The plt.close('all') command is used to close all active Figures. The following
example shows how a Figure can be created and closed:

plt.figure (num=10) #Create Figure with Figure number 10
plt.cleose (10) #Close Figure with Figure number 10

d. Seaborn Figure Styles

To control the plot style, Seaborn provides two methods: set_style (style, [rc])
and axes_style (style, [rc]).

seaborn.set_style(style, [rc]) sets the aesthetic style of the plots.
Parameters:

* style: A dictionary of parameters or the name of one of the following
preconfigured sets: darkgrid, whitegrid, dark, white, or ticks

* rc (optional): Parameter mappings to override the values in the preset Seaborn-
style dictionaries

Here is an example:

tmatplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style ("whitegrid")

plt.figure()
x1l = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot(xl, label='Group A')
plt.plot(x2, label='Group B')
plt.legend()

plt.show ()

This results in the following plot:

40
35

30

25 | —— Group A
Group B
20

15

10

00 05 10 15 20 25 30 35 40

Figure 4.4: Seaborn line plot with whitegrid style

seaborn.axes_style(style, [rc]) returns a parameter dictionary for the
aesthetic style of the plots. The function can be used in a with statement to
temporarily change the style parameters.

Here are the parameters:

* style: A dictionary of parameters or the name of one of the following
pre-configured sets: darkgrid, whitegrid, dark, white, or ticks

* rc (optional): Parameter mappings to override the values in the preset
Seaborn-style dictionaries

Here is an example:

$matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set ()

plt.figure ()

x1 [10, 20, 5, 40, 8]

x2 (30, 43, 9, 7, 20]

with sns.axes_style('dark'):
plt.plot(x1l, label='Group A')
plt.plot (x2, label='Group B')

plt.legend()

plt.show()

The aesthetics are only changed temporarily. The result is shown in the
following diagram:

40
35

30

25 —— Group A
—— Group B
20

15
10

5
o0 05 10 15 20 25 30 35 40

Figure 4.5: Seaborn line plot with dark axes style

Removing Axes Spines

Sometimes, it might be desirable to remove the top and right axes spines. The
despine () function is used to remove the top and right axes spines from the plot:

seaborn.despine (fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False)

The following code helps to remove the axes spines:

matplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns

sns.set style("white")
plt.figure ()

x1 [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]
plt.plot(xl, label='Group A')
plt.plot (x2, label='Group B')
sns.despine ()

plt.legend ()

plt.show ()

This results in the following plot:

40
35

30

25 | — Group A
—— Group B
20

15

10

00 05 1.0 1.5 20 25 30 35 4.0

Figure 4.6: Despined Seaborn line plot

Controlling the Scale of Plot Elements

A separate set of parameters controls the scale of plot elements. This is a handy way
to use the same code to create plots that are suited for use in contexts where larger or
smaller plots are necessary. To control the context, two functions can be used.

seaborn.set_context(context, [font scale], [re]) sets the plotting context
parameters. This does not change the overall style of the plot but affects things such as
the size of the labels and lines. The base context is a notebook, and the other contexts
are paper, talk, and poster—versions of the notebook parameters scaled by 0.8, 1.3,

and 1.6, respectively.

Here are the parameters:

* context: A dictionary of parameters or the name of one of the following
preconfigured sets: paper, notebook, talk, or poster

* font_scale (optional): A scaling factor to independently scale the size of
font elements

* rc (optional): Parameter mappings to override the values in the preset Seaborn
context dictionaries

The following code helps set the context:

$matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_context ("poster")

plt.figure ()
xl = [10, 20, 5, 40, 8]
x2 = [30, 43, 9, 7, 20]

plt.plot (x1, label='Group A')
plt.plot(x2, label='Group B')
plt.legend()

plt.show()

The preceding code generates the following output:

40 —— Group A
~——— Group B

20

0 1 2 3 4
Figure 4.7: Seaborn line plot with poster context

seaborn.plotting context (context, [font scale], [rec]) returnsa

parameter dictionary to scale elements of the Figure. This function can be used with a

statement to temporarily change the context parameters.
Here are the parameters:

* context: A dictionary of parameters or the name of one of the following
pre-configured sets: paper, notebook, talk, or poster

* font_scale (optional): A scaling factor to independently scale the size of
font elements

* rc (optional): Parameter mappings to override the values in the preset Seaborn
context dictionaries

Contexts are an easy way to use preconfigured scales of plot elements for different use

cases. We will apply them in the following exercise, which uses a box plot to compare
the IQ scores of different test groups.

	CI CCI HOD
	Answers:
	1.
	a.
	Annotations
	Annotations are used to annotate some features of the plot. In annotations, there are two locations to consider: the annotated location, xy, and the location of the annotation, text xytext. It is useful to specify the parameter arrow props, which resu...
	2. Voronoi tessellation, Delaunay triangulation, and choropleth plots are a few of the geospatial visualizations.
	3.
	a.
	b.
	i. Matplotlib is the commonly used visualization library in python.
	ii. However, Matplotlib is not designed for this task because its interfaces are complicated and inconvenient to use.
	iii. Matplotlib also restricts how geographical data can be displayed.
	iv. Cartopy is a Python package designed to make drawing maps for data analysis and visualization easy.
	v. Basemap is a great tool for creating maps using python in a simple way. It's a matplotlib extension, so it has got all its features to create data visualizations
	vi. The Basemap and Cartopy libraries allow you to plot on a world map, but these packages do not support drawing on map tiles.
	vii. Maptiles are image file that represents a specific geographic area at a particular zoom level.
	viii. Geoplotlib, on the other hand, was designed precisely for this purpose; it not only provides map tiles but also allows for interactivity and simple animations.
	ix. It provides a simple interface that allows access to compelling geospatial visualizations such as histograms, point-based plots, tessellations such as Voronoi or Delaunay, and choropleth plots.
	4.
	a. Seaborn offers handy functions to examine univariate and bivariate distributions. One possible way to look at a univariate distribution in Seaborn is by using the distplot() function. This will draw a histogram and fit a kernel density estimate (KD...
	b.
	5.
	a.
	Plotting a Single Image
	The plt.imshow(img) displays an image and returns an AxesImage object. For grayscale images with shape (height, width), the image array is visualized using a colormap. The default colormap is ‘viridis’. To actually visualize a grayscale image, the col...
	b.
	6.
	a.
	b.

