USN

,	\mathbf{O}^{1}	٩.	

Internal Assessment Test 2 Answer Scheme– November 2024

Sı	ıb:	DEEP LEA	EARNING Sub Code: 21CS743 Bra			Bra	ranch: A		InDS				
Da	te:	20/11/2024	Duration:	90 minutes	Max Marks:	50	Sem	VII			OBE		BE
			Answer any FIVE Questions			MARK S		со	RBT				
1	a	·			et Augmentatio model generaliz					[6]	CO 2	L3
		Of course, in	practice, the a	mount of data	we have is limi the training se	ted. On	e way to get a						
		Applications w	vith Explanati	on : object rec	ognition, speec	h recog	gnition etc (3	Marks)					
	b	Explain Back	Propagation	algorithm						[·	4]	CO 2	12
					ply called backp he network, in o								
		1 1 0	-	·	d for computing tion f (2 mark s	0	adient and how	to compute					
2	a	Discuss in det	ail about cha	in rule of calo	culus.					[5]	C0 2	L2
		compute the de	erivatives of f ack-propagation	unctions formed	sed with the cha ed by composing thm that compute . (2 Marks)	g other	functions who	se derivative	es			2	
		Examples : (3	3 Marks)										
	b	Explain Mult	i-Task Learn	ing and semi	supervised lear	ning				[5	CO	
		distributing ce The model can	ertain network generally be	a layers and pa divided into tw	ork to undertake rameters across wo kinds of part 2. Generic para	these ta s and a	asks. (2 Mark ssociated	•				2	
		unsupervised l	earning by us	ing both labele	achine learning ed and unlabeled ion tasks. Eg : In	l data t	o train artificia	l intelligence					
3	a	Illustrate Con	nputational g	graphs with ex	amples					[5]	C0 2	L3
		computational operation. An accompanied b	graph langua operation is a by a set of all is computed b	ge. To formalize a simple functi owable operation oy applying an	cisely, it is helpf ze our graphs, w on of one or mo tons. operation to a w	ve also re varia	need to introduables. Our grap	uce the idea on the idea of th	is				
		Example (2 M	larks)										

	b	Discuss about Adversarial Training with Examples.	[5]		
		Adversarial Training is a machine learning technique that is primarily used for improving the robustness of models. It's a process where models are trained with malicious inputs alongside the genuine data. (2 Marks)			
		Adversarial examples also provide a means of accomplishing semi-supervised learning. At a point x that is not associated with a label in the dataset, the model itself assigns some label y° . The model's label y° may not be the true label, but if the model is high quality, then y° has a high probability of providing the true label. (3 Marks)			
4		Explain about Adagrad and RMSProp Algorithm in Detail.	[10]	C0	L2
		Adagard : The AdaGrad algorithm, shown in algorithm 8.4, individually adapts the learning rates of all model parameters by scaling them inversely proportional to the square root of the sum of all of their historical squared values . The parameters with the largest partial derivative of the loss have a correspondingly rapid decrease in their learning rate, while parameters with small partial derivatives have a relatively small decrease in their learning rate. The net effect is greater progress in the more gently sloped directions of parameter space. (2 Marks) Algorithm : (3 Marks)		2	
		RMSProp : RMSProp uses an exponentially decaying average to discard history from the extreme past so that it can converge rapidly after finding a convex bowl, as if it were an instance of the AdaGrad algorithm initialized within that bowl. (2 Marks) Algorithm : (3 Marks)			
5	а	Explain Stochastic Gradient Descent (SGD)	[5]	C0	L2
		Stochastic Gradient Descent (SGD) is a powerful optimization algorithm used in machine learning and artificial intelligence to train models efficiently. It is a variant of the gradient descent algorithm that processes training data in small batches or individual data points instead of the entire dataset at once.		2	
	b	Explain regularization for deep learning.	[5]	C0 2	
		Many strategies used in machine learning are explicitly designed to reduce the test error, possibly at the expense of increased training error. These strategies are known collectively as regularization(2 Marks) An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias(1 Mark) we focused on three situations, where the model family being trained either (1) excluded the true data generating process—corresponding to underfitting and inducing bias, or (2) matched the true data generating process, or (3) included the generating process but also many other possible generating processe—the overfitting regime where variance rather than bias dominates the estimation error. The goal of regularization is to take a model from the third regime into the second regime. (2 Marks)		2	
6	a	Define Bagging and Discuss in detail about Dropout. Bagging : is a technique for reducing generalization error by combining several models. he idea is to train several different models separately, then have all of the models vote on the output for test examples. This is an example of a general strategy in machine learning called model averaging. Techniques employing this strategy are known as ensemble methods. (2 Marks) Dropout : Dropout is a technique where randomly selected neurons are ignored during training.	[5]	C0 2	L2
		They are "dropped-out" randomly. This means that their contribution to the activation of downstream neurons is temporally removed on the forward pass and any weight updates are not applied to the neuron on the backward pass.(removing non-output units from an underlying base network). To train with dropout, we use a minibatch-based learning algorithm that makes small steps, such as stochastic gradient descent. (3 Marks)			

b	Explain about Surrogate Loss Function and Early Stopping.	[5]	C0 2	
	The idea is to use the surrogate loss function during training to update the model parameters, and then evaluate the performance of the model using the original loss function. Surrogate loss functions are alternative loss functions that are used in machine learning when the original loss function is difficult or impossible to optimize directly.			
	One of the main benefits of using surrogate loss functions is simplicity. The original objective function may be very complex and difficult to optimize, while a surrogate function can be designed to be simpler and more computationally efficient. This simplicity can make it easier to optimize the function and reduce the computational cost of training the model. (3 Marks)			
	Early stopping : Early stopping is a powerful technique for training deep learning models. It strikes a balance between underfitting and overfitting, ensuring the model generalizes well. By monitoring the validation loss and halting training at the right moment, early stopping prevents overfitting and saves computational resources. (2 Marks)			