

USN

Internal Assessment Test 1 Answer scheme & Solutions – October 2024

Sub:
SOFTWARE ENGINEERING AND PROJECT

MANAGEMENT
Sub Code: BCS501 Branch: AInDS

Date: 14/12/2024 Duration: 90 minutes Max Marks: 50 Sem V OBE

Answer any FIVE Questions
MARK

S
CO RBT

1

Effective communication is among the most challenging activities that

you will confront. Justify this statement by discussing about the

principles that apply for communication within a software project

Effective communication is indeed one of the most challenging activities in any context,

particularly within a software project. This complexity arises due to diverse factors such as

varying perspectives, technical complexities, team dynamics, and the need for precision and

clarity. Below are the principles of communication within a software project and how they justify

the challenges of effective communication:

1. Clarity and Precision

• Software projects require precise communication to avoid misunderstandings. Ambiguity

in requirements, design, or implementation details can lead to errors, rework, and delays.

• For example, if a requirement is vaguely communicated, developers might interpret it

differently, leading to mismatched expectations.

2. Audience Awareness

• Communication must be tailored to the audience's technical expertise. Developers,

clients, and stakeholders often have different levels of understanding.

• Explaining technical details to a non-technical client demands simplification, while

communicating with developers requires in-depth technical accuracy.

3. Timeliness

• Communication must occur at the right time. Delayed communication about changes in

requirements or deadlines can disrupt the entire project's progress.

• For example, if a change in a project's scope is not promptly conveyed, developers might

work on outdated features.

4. Consistency

• Consistent messaging ensures that all team members are aligned on project goals and

progress.

• Inconsistent updates can lead to confusion, conflicting tasks, and inefficiencies.

5. Feedback and Active Listening

• Effective communication is two-way. Teams need to provide and accept feedback

actively to address misunderstandings or concerns.

• For instance, during code reviews, developers must articulate feedback constructively,

and recipients must understand and act on it.

6. Use of Appropriate Tools

• Software projects often leverage tools for documentation, version control, and task

management (e.g., JIRA, Slack, Git). Misuse or lack of familiarity with these tools can

hinder communication.

• For example, failing to update a project management tool can lead to team members

working on outdated tasks.

7. Cultural and Linguistic Differences

• In global teams, cultural and linguistic differences can lead to misinterpretations.

• For example, indirect communication styles in one culture might be misinterpreted as a

lack of clarity by another.

8. Conflict Resolution

• Software projects can involve disagreements over approaches or priorities. Resolving

such conflicts requires diplomatic communication.

• A poorly handled conflict can escalate tensions, while effective communication can turn

it into a constructive discussion.

10 CO3 L2

2

Briefly Explain the deployment design modeling principles.

1. Scalability

• The design should support scaling the system to handle increased loads, whether by

adding resources (vertical scaling) or distributing the load across multiple nodes

(horizontal scaling).

2. Performance Optimization

• Deployment should be planned to minimize latency and maximize throughput. This

includes optimizing resource allocation, such as CPU, memory, and storage, and

considering proximity to end-users.

3. Reliability and Availability

• The system must be designed to ensure high availability through redundancy, failover

mechanisms, and clustering. Reliable deployment minimizes downtime and maintains

service continuity.

4. Security

• Security measures such as firewalls, encryption, and secure access controls should be

incorporated to protect data and applications from vulnerabilities and attacks.

5. Modularity

• Components should be deployed in a modular manner, allowing independent updates,

maintenance, and scaling of specific parts of the system without impacting others.

6. Maintainability

• The design should facilitate easy updates, monitoring, and debugging. Use of containers

and orchestration tools like Docker and Kubernetes can enhance maintainability.

7. Cost-Effectiveness

• The deployment model should balance performance and cost. This involves selecting

appropriate infrastructure (on-premise, cloud, or hybrid) and optimizing resource usage.

8. Interoperability

• The deployment model should ensure compatibility and seamless communication

between different components and systems.

9. Compliance and Standards

• Adherence to regulatory requirements, industry standards, and organizational policies

must be ensured in the deployment design.

10. Documentation

• Clear documentation of the deployment model is crucial for team understanding,

onboarding, troubleshooting, and future modifications.

10 CO3 L1

3

Explain the activities of management in doing management control.

1. Setting Objectives and Standards

• Define clear, measurable objectives that align with the organization's strategic goals.

• Establish performance standards or benchmarks to measure progress and success.

2. Planning

• Develop detailed plans that outline how the objectives will be achieved.

• Allocate resources (financial, human, technological) required to implement the plans

effectively.

3. Monitoring and Measuring Performance

• Continuously track the progress of activities against the defined standards.

• Use tools like key performance indicators (KPIs), dashboards, and reports to gather

performance data.

4. Evaluating Performance

• Compare actual results with planned objectives and performance standards.

• Identify variances and analyze their causes to understand areas of improvement.

5. Taking Corrective Action

• Implement corrective measures to address deviations from the plan.

• This may involve reallocating resources, adjusting strategies, or revising goals if

necessary.

6. Communicating and Reporting

• Ensure regular communication of performance status to stakeholders, including team

members and upper management.

• Provide transparent and accurate reports to facilitate informed decision-making.

7. Motivating and Guiding Employees

• Encourage employees to meet performance standards through motivation, training, and

support.

• Provide feedback and recognition to maintain morale and productivity.

8. Ensuring Accountability

• Assign clear responsibilities and accountabilities to team members or departments.

• Establish mechanisms for regular reviews and audits to ensure compliance with

standards.

9. Adapting to Changes

• Adjust management control processes in response to changes in the internal or external

environment, such as market trends, technology advancements, or organizational

restructuring.

10. Risk Management

• Identify potential risks that may affect the achievement of objectives.

• Develop and implement strategies to mitigate these risks.

10 CO L1

4

Explain traditional v/s Modern Project management Practices

Aspect
Traditional Project

Management
Modern Project Management

Approach
Linear and sequential (Waterfall

model).

Iterative, flexible, and adaptive (Agile,

Scrum, Kanban).

Planning

Detailed upfront planning with

fixed scope, timelines, and

budget.

Incremental planning, often revisited

and adjusted throughout the project.

Focus Deliverables and milestones.
Value delivery, customer satisfaction,

and continuous improvement.

Project Structure
Rigid hierarchies and defined

roles.

Collaborative teams with cross-

functional roles.

Documentation
Extensive and detailed

documentation is critical.

Minimal documentation, focusing on

what is essential for execution.

Change

Management

Resistant to change; changes

require formal processes.

Embraces change as a way to improve

and adapt to evolving needs.

Team Dynamics
Authority-driven, manager-

centric decision-making.

Empowered teams with shared decision-

making responsibilities.

Technology Usage
Limited reliance on tools;

manual tracking and reporting.

Heavy use of project management

software and automation tools (e.g., Jira,

Trello).

Risk Management

Risk is analyzed and mitigated

primarily at the start of the

project.

Continuous risk identification and

management throughout the project.

Customer

Involvement

Customers are involved mainly

during requirement gathering

and delivery.

Continuous customer involvement and

feedback throughout the project

lifecycle.

Delivery Style
One-time delivery at the end of

the project.

Frequent, smaller deliveries or

increments of functionality.

Performance

Measurement

Based on adherence to schedule,

budget, and scope.

Based on value delivered, team

performance, and customer satisfaction.

Tools and

Techniques

Gantt charts, Work Breakdown

Structures (WBS), Critical Path

Method (CPM).

Agile boards, burndown charts,

continuous integration/continuous

delivery (CI/CD).

Flexibility
Low flexibility, making it

difficult to adapt to changes.

High flexibility, allowing rapid response

to changing priorities.

Industries Suited

Construction, manufacturing, or

industries with fixed

requirements.

Software development, IT, or industries

with dynamic requirements.

10 CO4 L2

5

Why do we need software quality models? Explain Garvin’s quality dimension Explain McCall’s

Model

Software quality models provide a structured framework to evaluate, manage, and improve

software quality. These models help stakeholders understand the critical aspects of quality,

establish measurable criteria, and ensure the software meets user expectations and industry

standards.

Key Reasons for Software Quality Models:

1. Objective Assessment: Define measurable attributes for evaluating software quality.

2. Improved Development: Identify areas of improvement during development and

maintenance.

3. Stakeholder Communication: Bridge gaps between developers, clients, and users

regarding quality expectations.

4. Consistency: Ensure consistent quality standards across projects.

5. Risk Mitigation: Identify and address potential quality risks early in the lifecycle.

Garvin’s Quality Dimensions

David Garvin introduced eight dimensions of quality, providing a comprehensive view of quality

in products, including software.

1. Performance: How well the software performs its intended function.

Example: Response time of a search query in an application.

2. Features: Additional functionalities that enhance the core operations.

Example: Auto-save in a text editor.

3. Reliability: The likelihood of the software functioning without failure over a specified

period.

Example: A server maintaining uptime for 99.9% of the time.

4. Conformance: The degree to which the software adheres to specifications and standards.

Example: Compliance with ISO or industry-specific standards.

5. Durability: The software's ability to withstand changes and maintain performance over

time.

Example: Legacy systems that still operate efficiently after decades.

6. Serviceability: The ease of maintaining and repairing the software.

Example: Providing timely patches and updates.

7. Aesthetics: The user experience, including interface design and intuitiveness.

Example: Clean and user-friendly UI design.

8. Perceived Quality: The user’s subjective judgment of quality, often influenced by

branding or reputation.

Example: Trust in software from well-known developers.

McCall’s Model

McCall's model, one of the earliest software quality models, focuses on defining quality attributes

and their impact on software from the developer's and user's perspectives. It categorizes quality

into three main categories:

1. Product Operation: Attributes affecting the software's functionality during use.

o Correctness: Adherence to specified requirements.

o Reliability: Continuity of service under specified conditions.

o Efficiency: Optimal use of resources like memory, CPU, and bandwidth.

o Integrity: Protection against unauthorized access and data corruption.

o Usability: Ease of learning and operating the software.

2. Product Revision: Attributes affecting software maintenance and updates.

o Maintainability: Ease of fixing defects or making enhancements.

o Flexibility: Adaptability to changing requirements.

o Testability: Ease of testing the software to ensure quality.

3. Product Transition: Attributes affecting software portability and adaptability to new

environments.

o Portability: Ability to function across different platforms.

o Reusability: Use of software components in other applications.

o Interoperability: Ability to integrate with other systems.

Representation:

McCall’s model uses a hierarchical structure:

10 CO5 L2

6

Briefly explain the cocomo II model

The COCOMO II (Constructive Cost Model II) is a comprehensive framework used to estimate

the cost, effort, and schedule required for software development projects. It is an updated version

of the original COCOMO model, designed to address modern software development practices and

technologies.

Key Features of COCOMO II:

1. Three Submodels:

o Application Composition Model: Used for projects involving rapid application

development (RAD) or prototyping.

o Early Design Model: Provides rough estimates based on high-level system

characteristics when detailed information is unavailable.

o Post-Architecture Model: Provides more accurate estimates during the detailed

design and coding phases when more information is available.

2. Effort Estimation: The model predicts the effort (in person-months) using the formula:

Effort=A×(Size)E×∏(EM)\text{Effort} = A \times \text{(Size)}^E \times \prod

\text{(EM)}Effort=A×(Size)E×∏(EM)

o A: Constant scaling factor

o Size: Estimated size of the software (usually in KSLOC – thousands of source

lines of code)

o E: Exponent derived from project scale factors

o EM: Effort multipliers based on project-specific attributes (e.g., team

experience, tools, etc.)

3. Cost Drivers: The model considers various cost drivers grouped into categories like

product, hardware, personnel, and project factors, each influencing the effort.

4. Scalability: COCOMO II adjusts for project size, complexity, and development

methodology, making it suitable for small to large projects.

5. Flexibility: It supports different stages of software development, allowing estimates to

evolve as project details become clearer.

Advantages:

• Tailored to modern software engineering practices.

• Provides more detailed and customizable estimation compared to its predecessor.

• Supports iterative and incremental development methodologies.

Limitations:

• Requires accurate inputs and historical data for reliable estimates.

• Complex to implement compared to simpler estimation models.

10 CO5 L2

