
USN					

Internal Assessment Test 2 Dec 2024

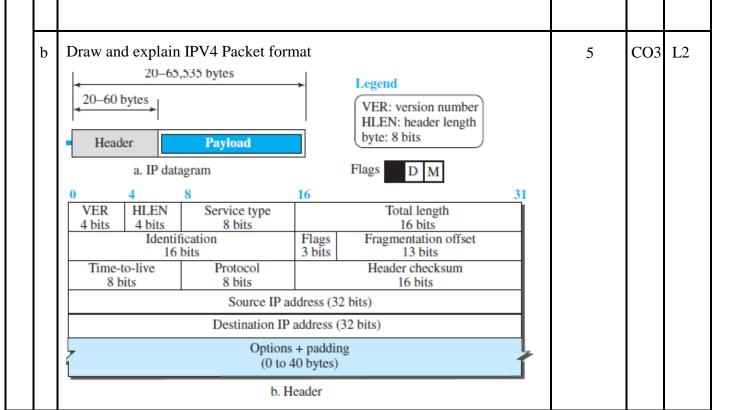
Sub:		Computer Networks						Sub Code:	BCS502	Branch	AIN	INDS / CS (DS)		
Date	: :			Duratio	Duratio 90		50	Sem		V		О	BE	
				n:	minutes	Marks:				l M	ARK			
						any FIVE stions				141.	S	CO	RBT	
1	a	i)	f	ragment, t		with an <i>M</i> bit ment, or a minented?				w	5	CO3	L3	
			te who	ether more	fragments	is part of the of the same p	acke	et are expec		w:				
		 M = 1: Indicates that more fragments are coming. M = 0: Indicates this is the last fragment or the packet was not fragmented at all. 												
	Interpretation of $M = 0$:													
			If th	This is fragme re Fragme This is presence	nted. It is the nt Offset is the last frace of a non-has been fra	s 0: agment, meane original, under greater that gment of a finite of a finite original agment of a finite original agmented, and agmented, and agmented.	nfrag n 0: ragm t off	mented pack ented pack set indicate	eket. et. The s that the	he				
		Sumi	nary	:										
		•	You	need to al If Frag fragme If Frag	so check the ment Offse nted).	us if the pack e Fragment (et = 0, it is the et > 0, it is the	Offse onl	et: y fragment	(not					
		ii)	(of HLEN is	s 5, and the	n which the o value of the first byte and	tota1	length field						
		Key l	Data:	:										
		1.	Offs	et Value:	100 (measu	red in 8-byte	unit	s).						

Step-by-Step Calculation:

1. **Payload Length**: The total length includes the header, so the payload size is:

Payload Length=Total Length-Header Length=100-20=80 bytes

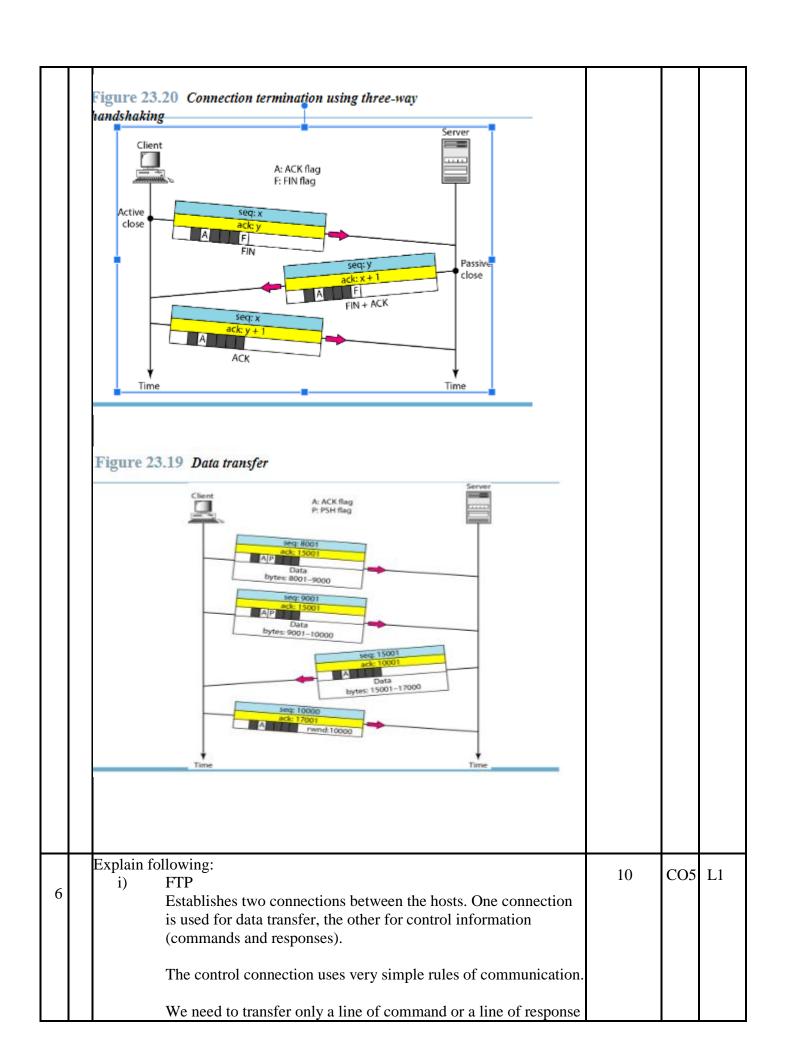
First Byte Number: The fragment offset value indicates the starting position of the payload in the original unfragmented packet. Since the offset is measured in 8-byte units:

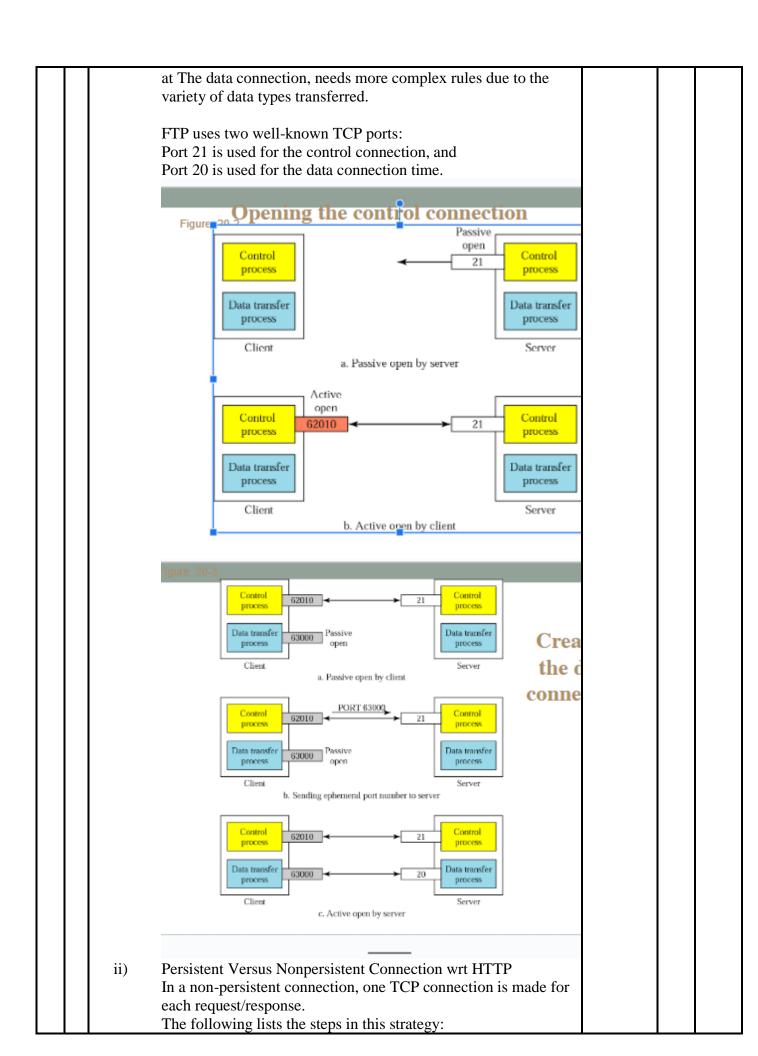

First Byte Number=Offset×8=100×8=800

2. **Last Byte Number**: The last byte is calculated by adding the payload length to the first byte number (but subtracting 1 since the numbering starts from 0):

Last Byte Number=First Byte Number+ Payload Length-1

Final Answer:


First Byte Number: 800Last Byte Number: 879



2	An organization is granted the block 130.56.0.0/16. The administrator wants to create 1024 subnets. a. Find the subnet mask.	10	CO3	L3
	1. Calculate the number of bits needed for subnetting:			
	Calculate the number of bits needed for subnetting:			
	$ullet$ To create 1024 subnets, $2^n \geq 1024$, where n is the number of additiona			
	$ullet$ $n=10$ (since $2^{10}=1024$).			
	 2. Update the prefix length: Original prefix length: 16 bits. Adding 10 bits for subnetting: 16 + 10 = 26 bits. 3. Subnet mask: The subnet mask is /26 which corresponds to:			
	 b. Find the number of addresses in each subnet. 1. The total number of bits in an IPv4 address is 32. 2. The host portion of each subnet is 32–26=6 bits. 3. The number of addresses per subnet 2^6 = 64. 			
	c. Find the first and last addresses in subnet 1.			
	Subnet 1 is the first subnet, starting right after the network address.			
	Range of subnet 1:			
	Subnet 1 starts at 130.56.0.0. The block size is 64			
	130.56.0.63 130.56.0.63.			
	First and last addresses:			
	First address: 130.56.0.0 Last address: 130.56.0.63			
	The block size is 64 64 addresses, so the last address is 130.56.0.63 130.56.0.63. First and last addresses: First address: 130.56.0.0			

	1					
	d. Find the firs	t and last addresses in s	subnet 1024.			
	1. Subnet 1024					
	2. Range of sul					
	Subnet	1024 starts at: $130.56.0.0 +$	(1024-1) imes 64 = 130.56.255.192			
	The block	ck size is 64 addresses, so	the last address is:			
		130.56.2	255.192 + 63 = 130.56.255.255			
	3. First and last	t addresses:				
	First add	dress: 130.56.255.192				
	Last add	dress: 130.56.255.255	•			
a	D:cc 1	ween TCP and UDP				
3 a	Feature Feature	TCP TCP TCP	UDP	4	CO4	L2
	Connection Type	Connection-oriented	Connectionless			
	Reliability	Reliable	Unreliable			
	Speed	Slower due to overhead	Faster due to simplicity			
	Data Ordering	Guaranteed	Not guaranteed			
	Use Cases	Web, email, file transfers	Streaming, gaming, VoIP			
	Header Size	Larger (20-60 bytes)	Smaller (8 bytes)			
	Distribute	ed, Hierarchica	I Database			
	LD com D	NS servers org DNS	S servers edu DNS servers			
	yahoo.com DNS serve		org poly.edu umass.edu S servers DNS serversDNS servers			
	client want	s IP for www.amazon.co	om, 1 st approx:			
	:	eries a root server to f				
	_		to get amazon.com DNS server S server to get IP address for			
	www.an	nazon.com				
			Application 2-7			
a		forance between local s	and remote log-in in TELNET?	5	CO5	T.1
	What is the un	referice between focal a	ind remote log-in in TELNET!	J		
4						
4	Login: Authoriogin 2. Remot	ization with user identif te login	fication & password 1. Local			
4	login 2. Remondation 1. Local login: terminal driver	te login When user types at a te	erminal, keystrokes are accepted by turn, interprets it to run desired			
4	login 2. Remondation 1. Local login: terminal driver	te login When user types at a ter & passed to OS. OS in cation program	erminal, keystrokes are accepted by			

	_			
	The characters are sent to TELNET client, which transfers it to TCP/IP stack. TCP/IP converts it to NVT characters & sends to remote machine. OS at remote machine sends that to TELNET server, which changes NVT character to understandable format to OS. Pseudo terminal driver interprets & sends to application program			
	b In electronic mail, what are the tasks of a user agent? The first component of an electronic mail system is the user agent (UA). It provides service to the user to make the process of sending and receiving a message easier. A user agent is a software package (program) that composes, reads, replies to, and forwards messages. It also handles local mailboxes on the user computers.	5	CO5	L1
5	Explain in detail with diagram connection establishment using 3way handshaking in TCP Figure 23.18 Connection establishment using three-way handshaking Client Seq: 8000 Active open Seq: 8000 Active open Seq: 8000 Active open Seq: 15000 Activ	10	CO4	L2

 The client opens a TCP connection and sends a request. The server sends the response and closes the connection. The client reads the data until it encounters an end-of-file marker; it then closes the connection.
HTTP version 1.1 specifies a persistent connection by default. In a persistent connection, the server leaves the connection open for more requests after sending a response. The server can close the connection at the request of a client or if a time-out has been reached. The sender usually sends the length of the data with each response.

CI CCI HOD