USN					

Internal Assessment Test II - Nov 2024

Sı	ıb:	: Theory Of Computation				Sub Code:				AIDS & CSE(DS)		
Date:		16/12/2024 Duration:	90 minutes	Max Marks:	50	Sem/Sec:	V -A, B &		OBE			
A	Answer any FIVE FULL Ouestions								MA	RKS	со	RBT
	a	Check whether the given grammar G is ambiguous or not.							5		CO3	L2
		$S \rightarrow aB \mid bA$										
		$A \rightarrow a \mid aS \mid bAA$										
1		$B \rightarrow b \mid bS \mid aBB$										
	U	Define PDA and its Instantaneous Description (ID)									CO3	L3
	u	Convert the following grammar to a PDA that accepts the same language.						5		CO3	L2	
		$S \rightarrow 0S1 \mid A$										
2		$A \to 1A0 \mid S \mid \varepsilon$									<i></i>	
									5		CO3	L2
	a	Find a Greibach normal form grammar equivalent to the following CFG.										
		$A1 \rightarrow A2A3$ $A2 \rightarrow A3A1/b$						5		CO3	L3	
3		A3→A1A2/a If L1 and L2 are Context Free Languages then prove that L1UL2, L1.L2 & L1* are Context										
	b	Free Language.	5		CO3	13						
	0	Convert the following grammar into Chomsky Normal Form							5			L3
	u								5		CO3	L3
4	b	State Pumping lemma for		v that the langu	age L -	$-\{0^{n}1^{n}2^{n}\}$ w	here n>1 is i	not	-			
	Ũ	CFG	of o and bho	in that the fungu	uge 1	- (0 1 2) (1		liot	5		CO3	L3
5	a	Construct a TM for multi	plication of two	unary number	s.							-
								10		CO4	L3	
	a	Explain about Programming Techniques for Turing Machines.										
6		-	_	-					5		CO4	L3
	b	Write in detail about universal Turing machine.										
									5		CO5	L3

CCI

HoD

SD: (i)(2, a, x) = (2, ax)push into the stack (2, a, x) = (2, e)Cii) pop from the stack (2, a, x) = (2, x)(iri) No change in the stack. L= {W(WB] -> PDA 2 (6) $(0, 0| \epsilon)$ 2,5 (1,1(E) (c, 010) ho (E, Zo) Zo (0, 20 0 20) (C, 1/1) (1, zol1 zo) (0,0100) (0, 17 01) (1,1)(1,0/ 10) $A_1 \rightarrow A_2 A_3 \rightarrow G$ GNF ! 3) A3 -7 A, A2 (a. -13) A3-> AA2 a eg 3 -> A2 A3 A2 10 A3-) A3A, A3A2 16A3A2 10 A-> A ~ |Bi|B2

$$A_{3} \rightarrow b A_{3} A_{2} | a$$

$$A_{3} \rightarrow b A_{3} A_{2} z | a^{2}$$

$$z \rightarrow A_{1} A_{3} A_{2} | A_{1} A_{3} A_{2} z \rightarrow (2)$$

$$(q) A_{2} \rightarrow A_{3} A_{1} | b$$

$$\Rightarrow b A_{3} A_{2} A_{1} | a A_{1} | b | b A_{3} A_{2} z A_{1} | a Z A_{1} | a | b | b A_{3} A_{2} Z A_{1} | a Z A_{1} | a | a | b | b A_{3} A_{2} Z A_{1} | a | A_{1} | b | b A_{3} A_{2} Z A_{1} A_{3} | A_{1} \rightarrow b A_{3} A_{2} A_{1} A_{3} | a A_{1} A_{3} | b A_{3} | b A_{3} | b A_{3} A_{2} Z A_{1} A_{3} | A_{1} \rightarrow b A_{3} A_{2} A_{1} A_{3} | a A_{1} A_{3} | b A_{3} | b A_{3} A_{2} Z A_{1} A_{3} | a A_{1} A_{3} | a A_{1} A_{3} | a A_{1} A_{3} | a A_{1} A_{3} | b A_{3} | b A_{3} A_{2} Z A_{1} A_{3} | a A_{1} A_{3} | a A_{1} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} z | b A_{3} A_{3} A_{2} z | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} | a A_{1} A_{3} A_{3} A_{2} | b A_{3} A_{3} A_{2} z | b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} z | a A_{1} A_{3} A_{3} A_{2} z | b A_{3} A_{1} A_{3} A_{2} z | a A_{1} A_{3} A_{3} A_{2} z | b A_{3} A_{1} A_{3} A_{2} z | a A_{1} A_{3} A_{3} A_{2} z | b A_{3} A_{1} A_{3} A_{2} z | a A_{1} A_{3} A_{2} z | b A_{3} A_{2} A_{1} A_{3} A_{2} z | b A_{3} A_{2} z | b A_{3} A_{2} A_{1} A_{3} A_{2} z | b A_{3} A_{2} | b A_$$

$$3 \textcircledleft union:$$

$$24 \ 4 \ 2 \ 12 \ one two (FL, then Liullis also
CFL
Ex: Liz fanther [m>0 ln>0
Liz (anther [m>0 ln>0]
Liz (anther [m>0 ln>0]
her Liz Liuli
z fanther Uanther [n>0, rizo]
is also CFL
solfL is closed under Union
Concationation
Concationation
 $ft \ L \ Liz \ one \ CFL, then \ Lili 2 \ 21 \ abo (FL)
Li = fanth[nzo], lize (endm](nzo]
Li = fanth[nzo], lize (endm](nzo]
Li = z anther (n, nzo] to also a CFL.
Kleen closes:.
The Li to CFL, then Lit to also a CFL.
Li = fait is CFL, then Lit to also a CFL.
Li = fait Stand [m, nzo] to also a CFL.
CFG to CNF
 $(a) = S \rightarrow ASALAB$
 $S \rightarrow BS$
 $B \rightarrow b | e$$$$

えのいれっかりのショう L= ω = $|V \omega x| \leq \gamma$ (l)→+I×VI (ii) u vico xiz $C_{iil})$ 0112 4 1 j= 0 0001122241 not CFL i\ L for multiplication. 书·井·井, £ 1-)1, P TM 5 6 23 9.2 2, 90 × á 7812 B->1 131P キッサ, 28 #-1B problemi Halting 6 enurceable problem a recurre Halting prublem is that is also undecidable.

Does a TM halt on a given 11p w?

The with several tapes , each with its own independently controlled acad write head. $M \in (Q, \Sigma, M, S, S, B, F)$ S' QXN -> 2×N × 54 R3 NON - determanistic TMI (٤) S(2, x) = S(2, Y, D)(22, Y, D2)..(2n, JK. DZ)] Multi dimensional TM! OXP - OXP (L, R, DI, M3 D1 - UP D2 - 7 down TM with More than one dimension. TM has some fined no. of heads called Multihead Thi munimum Matc & Mynboll, the head can note Based on state & Mynboll, the head can note Multihead Th left, gight & granain stationary.