syl o L L]

Internal Assessment Test 3 — December 2024

Sub: Data Visualization Sub Code: | 21AD71 | Branch: AInDS
Date: | 14/12/2024 Duration .90 Max Marks: | 50 Sem VII OBE
minutes
Answer any FIVE Questions M'AéRK CO | RBT
11 a \What is bokeh? Explain the features of bokeh. [5] 5 L1
Explain the concept of bokeh with a diagram. [5]
2 | a [What is web scraping? How are binary files read using urllib? [10] 5 L2
3 | a [How is HTML parsing done using BeautifulSoup? [10] 5 L2
Explain widgets in bokeh. Give the syntax for the following:
Import and call the output_notebook method from Bokeh's io interface to display the plots inside
Jupyter Notebook.
alal Import the necessary interact and interact_manual elements from ipywidgets. 10 : L3
» Create a checkbox widget and print out the result of the interactive element. [10]
» Create a dropdown using a list of options, ['Optionl’,'Option2','Option3', 'Option4'] as the
@interact decorator value.
» Create a text input using a value of 'Input Text' as the @interact decorator value.
5 | a [What is eXtensible Markup Language? Explain looping through nodes? [10] 5 L2
a [Explain JSON and how is parsing done in JSON? [10] 5 L2
Cl CcClI HOD

Answer Key

la

Introduction

Bokeh is an interactive visualization library focused on modern browsers and the web.
Other than Matplotlib or geoplotlib, the plots and visualizations we are going to create
in this chapter will be based on JavaScript widgets. Bokeh allows us to create visually
appealing plots and graphs nearly out of the box without much styling. In addition to
that, it helps us construct performant interactive dashboards based on large static
datasets or even streaming data.

Bokeh has been around since 2013, with version 1.4.0 being released in November 2019.
It targets modern web browsers to present interactive visualizations to users rather
than static images. The following are some of the features of Bokeh:

Simple visualizations: Through its different interfaces, it targets users of many skill
levels, providing an API for quick and straightforward visualizations as well as more
complex and extremely customizable ones.

Excellent animated visualizations: It provides high performance and can,
therefore, work on large or even streaming datasets, which makes it the go-to
choice for animated visualizations and data analysis.

Inter-visualization interactivity: This is a web-based approach; it's easy
to combine several plots and create unique and impactful dashboards with
visualizations that can be interconnected to create inter-visualization interactivity.

Supports multiple languages: Other than Matplotlib and geoplotlib, Bokeh
has libraries for both Python and JavaScript, in addition to several other
popular languages.

Multiple ways to perform a task: Adding interactivity to Bokeh visualizations can
be done in several ways. The simplest built-in way is the ability to zoom and pan in
and out of your visualization. This gives the users better control of what they want
to see. It also allows users to filter and transform the data.

Beautiful chart styling: The tech stack is based on Tornado in the backend and is
powered by D3 in the frontend. D3 is a JavaScript library for creating outstanding
visualizations. Using the underlying D3 visuals allows us to create beautiful plots
without much custom styling.

Concepts of Bokeh

The basic concept of Bokeh is, in some ways, comparable to that of Matplotlib. In
Bokeh, we have a figure as our root element, which has sub-elements such as a title,

an axis, and glyphs. Glyphs have to be added to a figure, which can take on different
shapes, such as circles, bars, and triangles. The following hierarchy shows the different
concepts of Bokeh:

Bokeh
Python
e JL R
Interfaces Output Presentation Integration
Models File Interactions Embed
[[I
Plotting Notebook Styling
[I
Server Tools
[
Layouts

Figure 6.1: Concepts of Bokeh

2.a

12.6 Parsing HT'ML and scraping the web

One of the common uses of the urllib capability in Python is to scrape the web.
Web scraping is when we write a program that pretends to be a web browser and
retrieves pages, then examines the data in those pages looking for patterns.

As an example, a search engine such as Google will look at the source of one web
page and extract the links to other pages and retrieve those pages, extracting links,
and so on. Using this technique, Google spiders its way through nearly all of the
pages on the web.

Google also uses the frequency of links from pages it finds to a particular page as
one measure of how “important” a page is and how high the page should appear
in its search results.

12.5 Reading binary files using urllib

Sometimes you want to retrieve a non-text (or binary) file such as an image or
video file. The data in these files is generally not useful to print out, but you can
easily make a copy of a URL to a local file on your hard disk using urllib.

The pattern is to open the URL and use read to download the entire contents of
the document into a string variable (img) then write that information to a local
file as follows:

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen('http://data.prde.org/cover3. jpg') .read()
fhand = open('cover3. jpg', 'wb')

fhand.write (img)

fhand.close()

Code: https://www.pyde.com/code3/curll.py

This program reads all of the data in at once across the network and stores it in the
variable img in the main memory of your computer, then opens the file cover. jpg
and writes the data out to your disk. The wb argument for open() opens a binary
file for writing only. This program will work if the size of the file is less than the
size of the memory of your computer.

However if this is a large audio or video file, this program may crash or at least
run extremely slowly when your computer runs out of memory. In order to avoid

running out of memory, we retrieve the data in blocks (or buffers) and then write
each block to your disk before retrieving the next block. This way the program can
read any size file without using up all of the memory you have in your computer.

3.a

Even though HTML looks like XML? and some pages are carefully constructed to
be XML, most HTML is generally broken in ways that cause an XML parser to
reject the entire page of HTML as improperly formed.

There are a number of Python libraries which can help you parse HTML and
extract data from the pages. Each of the libraries has its strengths and weaknesses
and you can pick one based on your needs.

As an example, we will simply parse some HTML input and extract links using
the BeautifulSoup library. BeautifulSoup tolerates highly lawed HTML and still
lets you easily extract the data you need. You can download and install the
BeautifulSoup code from:

import urllib.request, urllib.parse, urllib.error
from bs4 import BeautifulSoup
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags

tags = soup('a')

for tag in tags:
print(tag.get('href', None))

Code: hitps://www.py4e.com/code3/urllinks.py

The program prompts for a web address, then opens the web page, reads the data
and passes the data to the BeautifulSoup parser, and then retrieves all of the
anchor tags and prints out the href attribute for each tag.

4.a
Import and call the output_notebook method from Bokeh's io interface to
display the plots inside Jupyter Notebook:

make bokeh display figures inside the notebook
from bokeh.io import output notebook
output notebook ()

importing the widgets
from ipywidgets import interact, interact manual

@interact (Value=False)
def checkbox (Value=False):
print (Value)

creating a dropdown
options=['Optionl', 'Option2', 'Option3', 'Option4']

@interact (Value=options)
def dropdown (Value=options[0]) :
print (Value)

creating an input text
@interact (Value='Input Text')
def text input (Value):

print (Value)

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured than HT'ML. Here
is a sample of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes" />
</person>

Each pair of opening (e.g., <person>) and closing tags (e.g., </person>) represents
a element or node with the same name as the tag (e.g., person). Each element
can have some text, some attributes (e.g., hide), and other nested elements. If
an XML element is empty (i.e., has no content), then it may be depicted by a
self-closing tag (e.g., <email />).

Often it is helpful to think of an XML document as a tree structure where there is
a top element (here: person), and other tags (e.g., phone) are drawn as children
of their parent elements.

type=intl

+1734
(j Chuek j) (i3034456?)

Figure 13.1: A Tree Representation of XML

13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loop to process all of
the nodes. In the following program, we loop through all of the user nodes:

import xml.etree.ElementTree as ET

inpat. = """
<stuff>
<users>
<user x="2">
<id>001</id>
<name>Chuck</name>
</user>
<user x="7">
<id>009</id>
<name>Brent</name>
</user>
</users>
</stuff>'""'

stuff = ET.fromstring(input)
lst = stuff.findall('users/user')
print('User count:', len(lst))

for item in 1st:
print('Name', item.find('name').text)
print('Id', item.find('id').text)
print('Attribute', item.get('x'))

Code: https://www.pyde.com/code3/Tml2.py

The findall method retrieves a Python list of subtrees that represent the user
structures in the XML tree. Then we can write a for loop that looks at each of
the user nodes, and prints the name and id text elements as well as the x attribute
from the user node.

User count: 2
Name Chuck

Id 001
Attribute 2
Name Brent

Id 009
Attribute 7

13.4 JavaScript Object Notation - JSON

The JSON format was inspired by the object and array format used in the
JavaScript language. But since Python was invented before JavaScript, Python's
syntax for dictionaries and lists influenced the syntax of JSON. So the format of
JSON is nearly identical to a combination of Python lists and dictionaries.

Here is a JSON encoding that is roughly equivalent to the simple XML from above:

{
"name" : "Chuck",
"phone" : {
Iltypeﬂ : Ilintlll s
"number" : "+1 734 303 4456"
1,
"email" : {
I|hideﬂ : Ilyesll
}

You will notice some differences. First, in XML, we can add attributes like “intl”
to the “phone” tag. In JSON, we simply have key-value pairs. Also the XML
“person” tag is gone, replaced by a set of outer curly braces.

13.5 Parsing JSON

We construct our JSON by nesting dictionaries and lists as needed. In this example,
we represent a list of users where each user is a set of key-value pairs (i.e., a
dictionary). So we have a list of dictionaries.

In the following program, we use the built-in json library to parse the JSON and
read through the data. Compare this closely to the equivalent XML data and code
above. The JSON has less detail, so we must know in advance that we are getting a
list and that the list is of users and each user is a set of key-value pairs. The JSON
is more succinct (an advantage) but also is less self-describing (a disadvantage).

import json

data = ''"'
[

{ llidll : 0|001I|,
lell : ll2ll g
"name" : "Chuck"

|

{ "ig" - uoogu,
lell g ll7ll p
"name" : "Brent"

}

] 35

info = json.loads(data)
print('User count:', len(info))

for item in info:
print('Name', item['name'])

print('Id', item['id'])
print ('Attribute', item['x'])

Code: https://www.py4e.com/code3/json2.py

If you compare the code to extract data from the parsed JSON and XML you will
see that what we get from json.loads() is a Python list which we traverse with
a for loop, and each item within that list is a Python dictionary. Once the JSON
has been parsed, we can use the Python index operator to extract the various bits
of data for each user. We don’t have to use the JSON library to dig through the
parsed JSON, since the returned data is simply native Python structures.

The output of this program is exactly the same as the XML version above.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent

Id 009
Attribute 7

	CI CCI HOD
	Answer Key
	1.a
	--
	2. a
	3. a
	--
	4. a

	5. a

	6. a

