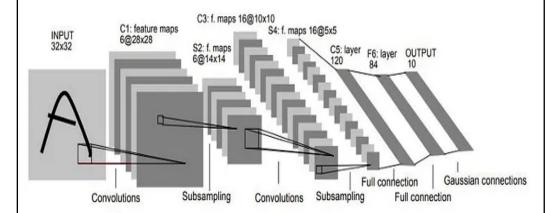


Internal Assessment Test 3 Answer Sheme – December 2024


Sub:	Sub: DEEP LEARNING ANSWER SCHEME			Sub Code:	21CS743 Branch:		A	AInDS	5			
Date:	Date: 17/12/2024 Duration : 90 minutes Max 50 Sem VII									0	BE	
	Answer any FIVE Questions							MARK	KS	со	RBT	
1	3 2 0 0 Fee H	neural network in image remains in image operation, ons to a select words, bringe at a time. 3 3 2 * * * * * * * * * * * * *	work (CNN) is ecognition and es (2 Marks), the main parected region of y convolution, me by applying the second of the average the kernel of the average the average the kernel of the average	a type of process to of the Coof the image it is possing specific results and the coof the image in the image in the coof the image in the coof the image in the coof the coof the image in the coof the coof in t	f artificing, d CNN, a age to sible to filter friction of the desired of the de	cial neural rue to its abi	network lity to ific filters I a specific s)		10		CO3	L2

2	Explain Spai Parameter model. In a when comp then never Sparse Inter input data computati complexity	e 5	CO3			
	Figure 9.2: Sparse connectivity, viewed from below. We highlight one input unit, x_3 , and highlight the output units in s that are affected by this unit. (Top)When s is formed by convolution with a kernel of width 3, only three outputs are affected by x . (Bottom)When					L3
	The data ueach chan or time. (2)	nel being the observation of a diff 2 Marks)	conalities and number of Channels of usually consists of severalchannels, ferent quantity at somepoint in space then be used with any general-purpose Multichannel Skeleton animatin data (orientation of each joint) Color image (RGB triplet per (x,y) tuple)	5	C03	
	^{3D} (3 Marks)	CT scan (one value per (x,y,z) tuple)	Color video (one RGB triplet per (x,y) tuple per time instant)			

Explain about LeNet in detail.

The LeNet-5 signifies CNN's emergence and outlines its core components. However, it was not popular at the time due to a lack of hardware, especially GPU (Graphics Process Unit, a specialised electronic circuit designed to change memory to accelerate the creation of images during a buffer intended for output to a show device) and alternative algorithms, like SVM, which could perform effects similar to or even better than those of the LeNet. (1 Mark)

Features of LeNet-5Every convolutional layer includes three parts: convolution, pooling, and nonlinear activation functionsUsing convolution to extract spatial features (Convolution was called receptive fields originally)The average pooling layer is used for subsampling.tanh' is used as the activation functionsing Multi-Layered Perceptron or Fully Connected Layers as the last classifierThe sparse connection between layers reduces the complexity of computation (4 Mark)

C03

L2

10

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32		-	
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	-	84	-	-	tanh
Output	FC	-	10	-	-	softmax

(5 Marks)

3

4	Discuss about RNN and how to compute the gradient in RNN. A recurrent neural network (RNN) is a deep learning model that is trained to process and convert a sequential data input into a specific sequential data output. (2 marks) $ \frac{1}{(2marks)} = \frac{1}{(2mark$	10	C03	L2
5	Explain LSTM with Block Diagram. Long Short-Term Memory, is a type of recurrent neural network (RNN) that uses gates to capture both short-term and long-term memory. LSTMs are designed to process and retain information over multiple time steps. They are widely used in deep learning and are ideal for sequence prediction tasks (2 Marks)	5	C03	L2

	b	Discuss about the components of the Conventional neural Network layer. The convolutional layer is the core building block of a CNN, and it is where the majority of computation occurs. It requires a few components, which are input data, a filter and a feature map. Let's assume that the input will be a color image, which is made up of a matrix of pixels in 3D. (3 Marks) Diagram (2 marks)	5	C03	
		Explain about Natural Language Processing NLP powers many applications that use language, such as text translation, voice recognition, text summarization, and chatbots. You may have used some of these applications yourself, such as voice-operated GPS systems, digital assistants, speech-to-text software, and customer service bots (2 Marks)			
6		Natural Language Processing O1 Text input and data collection O2 Text Preprocessing NLP working Text model deployment of and inference O3 Representation Model selection of and training of the selection of the	10	C05	L2
		(3 Marks) Working of Natural Language Processing (NLP) (5 Marks) Text Input and Data Collection Text Preprocessing Text Representation Feature Extraction Model Selection and Training Model Deployment and Inference Evaluation and Optimization Iteration and Improvement			

CI CCI HOD