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a) What is the significance of cutoff wavelength and V number for optical fibers? [05] CO1 L2

b) An optical fiber has a core index of 1.480 and a cladding index of 1.478. What isthe ~ [03] ~ CO1 L3
core size for single-mode operation at 1550 nm?

With optical ray diagram, define numerical aperture (NA) and state its significance. [10] Cco1 L2
Derive the expression for NA and acceptance angle for single mode step index fiber.
Discuss the following for optical fibers: [10] Cco1 L2

a) Fiber bending loss
b) Scattering loss
Explain Intermodal dispersion with necessary equations. [10] CO1 L2

Explain Fabry Perot resonator cavity of LASER with necessary diagrams and equations.  [10] ~ CO2 L2
Explain internal quantum efficiency and power in detail for LED. [100 CO2 L2

a. Consider a 30-km long optical fiber that has an attenuation of 0.4 dB/km at 1310 [06] CO1 L3
nm. Find the optical output power Pout if 200 mW of optical power is launched
into the fiber.

b. Consider a multimode step-index optical fiber that has a core radius of 25 pm, a [04] co:

core index of 1.48, and an index difference A = 0.01. The number of modes M = L3
760. Find the percentage of optical power that propagates in the cladding at 840
nm.
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1.

a)

a) What is the significance of cutoff wavelength and V number for optical fibers? (05]  COI
b) An optical fiber has a core index of 1.480 and a cladding index of 1.478. What is the (03] CO!

[ .[-J

core size for single-mode operation at 1550 nm?

b)

Guided modes in the fiber occur when the values for f3 satisfy the condition nk < < n,k. At the limit
of propagation when 8= n,k, a mode is no longer properly guided and is called being cut off. Thus un-
guided or radiation modes appear for frequencies below the cutoff point where f3 < n,k. However, wave
propagation can still occur below cutoff for those modes where some of the energy loss due to radiation
is blocked by an angular momentum barrier that exists near the core-cladding interface.'” These propaga-
tion states behave as partially confined guided modes rather than radiation modes and are called /eaky
modes.>%!>13 These leaky modes can travel considerable distances along a fiber but lose power through
leakage or tunneling into the cladding as they propagate.

An important parameter connected with the cutoff condition is the V number defined by
2ra 12 2ra
V = T(nﬁ—nj) = Z2NA 2.27)

This parameter is a dimensionless number that determines how many modes a fiber can support.
Except for the lowest-order HE|; mode, each mode can exist only for values of V that exceed a certain
limiting value (with each mode having a different V limit). The modes are cut off when 8 = n,k. This
occurs when V< 2.405. The HE |, mode has no cutoff and ceases to exist only when the core diameter is
zero. This is the principle on which single-mode fibers are based. The details for these and other modes

The V number also can be used to express the number of modes M in a multimode step-index fiber
when Vs large (see Sec. 2.6 for modes in a graded-index multimode fiber). For this case, an estimate
of the total number of modes supported in such a fiber is

2 2
_1(2ra > o2\ V7
M = E(—l ] (”f - ”2) - (2.28)

Since the field of a guided mode extends partly into the cladding, as shown in Fig. 2.19, a final quantity
of interest for a step-index fiber is the fractional power flow in the core and cladding for a given mode.
As the V number approaches cutoff for any particular mode, more of the power of that mode is in the
cladding. At the cutoff point, the mode becomes radiative with all the optical power of the mode residing
in the cladding. Far from cutoff—that is, for large values of V—the fraction of the average optical power
residing in the cladding can be estimated by

—clad . _—__ (2.29)
P WM

where P is the total optical power in the fiber. The details for the power distribution between the core
and the cladding of various LP;;, modes are given in Sec. 2.4.9. Note that since M is proportional to V2,
the power flow in the cladding decreases as Vincreases. However, this increases the number of modes
in the fiber, which is not desirable for a high-bandwidth capability.

Solution: Using the condition that V < 2.405
must be satisfied for single-mode operation, then from
Eq. (2.27) we have

Vi1
27 \m - 2
2.405 x 1.55um 1
2m J(1.480)% — (1.48 )2

a=

= 7.7um

If this fiber also should be single-mode at 1310 nm, then
the core radius must be less than 6.50 yum.



2. With optical ray diagram, define numerical aperture (NA) and state its significance. [10] COI L2
Derive the expression for NA and acceptance angle for single mode step index fiber.
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Fig. 2.17 Meridional ray optics repre-
sentation of the propagation
mechanism in an ideal step-index
optical waveguide

The meridional ray is shown in Fig. 2.17 for a step-index fiber. The light ray enters the fiber core from
amedium of refractive index nat an angle 6, with respect to the fiber axis and strikes the core-cladding
interface atanormal angle ¢. Ifit strikes this interface at such an angle that it is totally internally reflected,
then the meridional ray follows a zigzag path along the fiber core, passing through the axis of the guide
after each reflection.

From Snell’s law, the minimum or critcal angle 9, that supports total internal reflection for the meridi-
onal ray is given by

n

h

sin 9= (221)

Rays striking the core-cladding interface at angles less than @, will refract out of the core and be lost
in the cladding, as the dashed line shows. By applying Snell’s law to the air-fiber face boundary, the
condition of Eq. (2.21) can be related to the maximum entrance angle ; ..., which is called the accep-
tance angle 6, through the relationship

12
Dsin By g =Nsin = i), = (7 - 1 02)

where 6, = /2 - ¢,. Thus those rays having entrance angles 6 less than 6, will be totally internally
reflected at the corecladding interface. Thus 8, defines an acceptance cone for an optical fiber.
Equation (2.22) also defines the numerical aperture (NA) of a step-index fiber for meridional rays:

/2
NA=nsin ,=(1 - ng]" = n2A 223)

The approximation on the right-hand side is valid for the typical case where A, as defined by Eq. (2.20),
is much less than 1. Since the numerical aperture is related to the acceptance angle, it is commonly used
to describe the light acceptance or gathering capability of a fiber and to calculate source-to-fiber optical
power coupling efficiencies. This is detailed in Chapter 5. The numerical aperture is a dimensionless
quantity which is less than unity, with values normally ranging from 0.14 to 0.50.



3. Discuss the following for optical fibers: [100 Col L2
a) Fiber bending loss
b) Scattering loss

3.1.4 Bending Losses

Radiative losses occur whenever an optical o

fiber undergoes a bend of finite radius of radation B Field istribution
curvature.!” ¢ Fibers can be subject to two x| —

types of curvatures: (a) macroscopic bends - - --n_\
having radii that are large compared with the P T

fiber diameter, such as those that occur when / A l'l, \Cumd fiber
a fiber cable turns a corner, and () random Ry

microscopic bends of the fiber axis that can )

. . . Fig. 3.7 Sketchofthe fundamental mode field ina
arise when the fibers are incorporated into curved cptical waveguide. (Reproduced
cables. with permission from E.A.J. Marcatili and

. . 5. E. Miller, Bell Sys. Tech. J., vol. 48,

Let us first examine large-curvature radia- . 2161, Sept. 1969, © 1969, AT&T,)
tion losses, which are known as macrobend-
ing losses or simply bending losses. For slight
bends the excess loss is extremely small and is essentially unobservable. As the radius of curvature
decreases, the loss increases exponentially until at a certain critical radius the curvature loss becomes
observable. If the bend radius is made a bit smaller once this threshold point has been reached, the losses
suddenly become extremely large.

Qualitatively, these curvature loss effects can be explained by examining the modal electric field
distributions shown in Fig. 2.19. Recall that this figure shows that any bound core mode has an evanescent
field tail in the cladding that decays exponentially as a function of distance from the core. Since this field
tail moves along with the field in the core, part of the energy of a propagating mode travels in the fiber
cladding. When a fiber is bent, the field tail on the far side of the center of curvature must move faster
to keep up with the field in the core, as is shown in Fig. 3.7 for the lowest-order fiber mode. At a certain
critical distance x, from the center of the fiber, the field tail would have to move faster than the speed of
light to keep up with the core field. Since this is not possible, the optical energy in the field tail beyond
x, radiates away.

The amount of optical radiation from a bent fiber depends on the field strength at x_ and on the
radius of curvature R. Since higher-order modes are bound less tightly to the fiber core than lower-
order modes, the higher-order modes will radiate out of the fiber first. Thus the total number of modes
that can be supported by a curved fiber is less than in a straight fiber. The following expression'®
has been derived for the effective number of modes M that are guided by a curved multimode
fiber of radius a:

2/3
M= M {1-%+2(2a | 3 3.7
¢ 200 | R 2n,kR

where @ defines the graded-index profile, A is the core-cladding index difference, n, is the cladding
refractive index, k = 27/A is the wave propagation constant, and

o 2
M = ka)y A .
- a+2(n] a) (3.8)

is the total number of modes in a straight fiber [see Eq. (2.81)].

Another form of radiation loss in optical waveguide results from mode coupling caused by random
microbends of the optical fiber.”” " Microbends are repetitive small-scale fluctuations in the radius of
curvature of the fiber axis, as is illustrated in Fig. 3.8. They are caused either by nonuniformities in the
manufacturing of the fiber or by nonuniform lateral pressures created during the cabling of the fiber. The
latter effect is often referred to as cabling or packaging losses. An increase in attenuation results from
microbending because the fiber curvature causes repetitive coupling of energy between the guided modes
and the leaky or nonguided modes in the fiber.

One method of minimizing microbending losses is by extruding a compressible jacket over the fiber.
When external forces are applied to this configuration, the jacket will be deformed but the fiber will

Microbends

Power loss from higher-order modes

== —(

Power coupling to higher-order modes

Fig. 3.8 Small-scale fluctuations in the radius of curvature of the fiber axis lead to
microbending losses. Microbends can shed higher-order modes and can cause
power from low-order modes to couple to higher-order modes.

tend to stay relatively straight. For a multimode graded-index fiber having a core radius a, outer radius
b (excluding the jacket), and index difference A, the microbending loss o, of a jacketed fiber is reduced
from that of an unjacketed fiber by a factor®'

4
E

F(a,,) = I+:mz[§) E_r (3.9)
¥

Here, E; and Ej are the Young’s moduli of the jacket and fiber, respectively. The Young’s modulus
of common jacket materials ranges from 20 to 500 MPa. The Young’s modulus of fused silica glass is
about 65 GPa.



3.1.3 Scattering Losses

Scattering losses in glass arise from microscopic variations in the material density, from compositional
fluctuations, and from structural inhomogeneities or defects occurring during fiber manufacture. As
Sec. 2.7 describes, glass is composed of a randomly connected network of molecules. Such a structure
naturally contains regions in which the molecular density is either higher or lower than the average
density in the glass. In addition, since glass is made up of several oxides, such as Si0,, GeO,, and P,O;,

compositional fluctuations can occur. These two effects give rise to refractive-index variations that occur
within the glass over distances that are small compared with the wavelength. These index variations cause
a Rayleigh-type scattering of the light. Rayleigh scattering in glass is the same phenomenon that scatters
light from the sun in the atmosphere, thereby giving rise to a blue sky.

The expressions for scattering-induced attenuation are fairly complex owing to the random molecular
nature and the various oxide constituents of glass. For single-component glass the scattering loss at a
wavelength A (given in um) resulting from density fluctuations can be approximated by™'* (in base e
units)

8 3
aeac:lt = % (”Z - I)Z kb‘ IB! (34&‘)

Here, n is the refractive index, kj is Boltzmann’s constant, 3 is the isothermal compressibility of the
material, and the fictive temperature }'} 1is the temperature at which the density ﬁuctuanons are frozen into the
glass as it solidifies (after having been drawn into a fiber). Alternatively, the relation®'® (in base e units)

SHJ 2
asca:t = E nsp-kﬂrfﬁ?' (34b)

has been derived, where p is the photoelastic coefficient. A comparison of Eqgs. (3.4a) and (3.4b) is
given in Prob. 3.6. Note that Egs. (3.4a) and (3.4b) are given in units of nepers (that is, base e units). As
shown in Eq. (3.1), to change this to decibels for optical power attenuation calculations, multiply these
equations by 10 log e =4.343.

For multicomponent glasses the scattering at a wavelength A (measured in um) is given by®

8

= — (o) oV (3.5)
14

where the square of the mean-square refractive-index fluctuation (8n*)* over a volume of 8V is

(6n?)? =[9" ] (3 2[9’1 ](5‘:) (3.6)
1
10.0¢ Here, 8p is the density fluctuation and
E 6C,, is the concentration fluctuation of the
E F ith glass component. Their magnitudes must
& be determined from experimental scattering
= I data. The factors dn*/dp and In*/dC; are
= 1.0 the variations of the square of the index
& = with respect to the density and the ith glass
g f component, respectively.

é - Structural inhomogeneities and defects
< | R Intrinsic created during fiber fabrication can also cause
” ; i o absorption scattering of light out of the fiber. These defects
600 800 1000 1200 1400 1600 1800 may be in the form of trapped gas bubbles,
Wavelength (nm) unreacted starting materials, and crystallized
regions in the glass. In general, the preform
Fig. 3.5 Typical spectral attenuation range manufacturing methods that have evolved
Jfor production-run graded-index have minimized these extrinsic effects to the
multimode fibers. (Reproduced point where scattering that results from them

>

with permission from Keck,'® ©
1985, IEEE.) Rayleigh scattering.

is negligible compared with the intrinsic

Since Rayleigh scattering follows a charac-
teristic A~ dependence, it decreases dramati-
cally with increasing wavelength, as is shown
in Fig. 3.3. For wavelengths below about 1 um
it is the dominant loss mechanism in a fiber
and gives the attenuation-versus-wavelength
plots their characteristic downward trend with
increasing wavelength. At wavelengths longer
than | um, infrared absorption effects tend to
dominate optical signal attenuation.

Combining the infrared, ultraviolet, and
scattering losses, we get the results shown in
s absorption  Fig. 3.5 for multimode fibers and Fig. 3.6 for
IUUO - 1200 1400 1 single-mode ﬁbers.m Both of these ﬁgures
are for typical commercial-grade silica fibers.
The losses of multimode fibers are generally
Fig. 3.6 Typical spectral attenuation range for higher than those of single-mode fibers. This

production-run single-mode fibers. isaresult of higher dopant concentrations and
(Reproduced with permission from the accompanying larger scattering loss due to
Keck,'® © 1985, IEEE, ) greater compositional fluctuation in multimode
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fibers. In addition, multimode fibers are
subject to higher-order-mode losses owing to
perturbations at the core-cladding interface.
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4. Explain Intermodal dispersion with necessary equations. [10] COI L2

3.2.2 Modal Delay

Intermodal dispersion or modal delay appears only in multimode fibers. This signal-distorting mechanism
is a result of each mode having a different value of the group velocity at a single frequency. To see why the
delay arises, consider the meridional ray picture given in Fig. 2.17 for a multimode step-index fiber. The
steeper the angle of propagation of the ray congruence, the higher is the mode number and, consequently,
the slower the axial group velocity. This variation in the group velocities of the different modes results
in a group delay spread, which is the intermodal dispersion. This dispersion mechanism is eliminated
by single-mode operation but is important in multimode fibers. The maximum pulse broadening arising
from the modal delay is the difference between the travel time 7, of the longest ray congruence paths
(the highest-order mode) and the travel time 7, of the shortest ray congruence paths (the fundamental
mode). This broadening is simply obtained from ray tracing and for a fiber of length L is given by

n L Ln?
AT=T -T. =-1 -L|=—LA 3.13
max min ¢ | sin (P(- ¢ nz ( )

where from Eq. (2.21) sin ¢, = n,/n, and A is the index difference.

The question now arises as to what maximum bit rate B can be sent over a multimode step-index fiber.
Typically the fiber capacity is specified in terms of the bif rate-distance product BL, that is, the bit rate
times the possible transmission distance L. In order for neighboring signal pulses to remain distinguishable
at the receiver, the pulse spread should be less than 1/B, which is the width of a bit period. For example,

a stringent requirement for a high-performance link might be AT < 0.1/B. In general, we need to have
AT < 1/B. Using Eq. (3.13) this inequality gives the bit rate-distance product

n »
BL<-2%
nfﬂ

Taking values of n, = 1.480, n, = 1.465, and A = 0.01, the capacity of this multimode step-index fiber
is BL =20 Mb/s-km.

The root-mean-square (rms) value of the time delay is a useful parameter for assessing the effect of
modal delay in a multimode fiber. If it is assumed that the light rays are uniformly distributed over the
acceptance angles of the fiber, then the rms impulse response o, due to intermodal dispersion in a step-
index multimode fiber can be estimated from the expression

_ Ln A L(NA)

o = = ——
! 2\/5.:’ 4\/5}1'0

Here L is the fiber length and NA is the numerical aperture. Equation (3.14a) shows that the pulse
broadening is directly proportional to the core-cladding index difference and the length of the fiber.

A successful technique for reducing modal delay in multimode fibers is through the use of a graded
refractive index in the fiber core, as shown in Fig. 2.15. In any multimode fiber the ray paths associated
with higher-order modes are concentrated near the edge of the core and thus follow a longer path through
the fiber than lower-order modes (which are concentrated near the fiber axis). However, if the core has a
graded index, then the higher-order modes encounter a lower refractive index near the core edge. Since
the speed of light in a material depends on the refractive index value, the higher-order modes travel faster
in the outer core region than those modes that propagate through a higher refractive index along the fiber
center. Consequently this reduces the delay difference between the fastest and slowest modes. A detailed

(3.14a)

analysis using electromagnetic mode theory gives the following absolute modal delay at the output of a
graded-index fiber that has a parabolic (o = 2) core index profile (see Sec. 2.6):

2
o (3.14b)
*203¢

Thus for an index difference of A = 0.01, the theoretical improvement factor for intermodal rms pulse
broadening in a graded-index fiber is 1000.

In graded-index fibers, careful selection of the radial refractive-index profile can lead to bit rate-
distance products of up to 1 Gb/s-km.



5. Explain Fabry Perot resonator cavity of LASER with necessary diagrams and equations.

Stimulated emission in semiconductor lasers arises from optical transitions between distributions of
energy states in the valence and conduction bands. This differs from gas and solid-state lasers, in which
radiative transitions occur between discrete isolated atomic or molecular levels. The radiation in one type
of laser diode configuration is generated within a Fabry-Perot resonator cavity,'®'® shown in Fig. 4.18,
as in most other types of lasers. Here the cavity is approximately 250-500 ym long, 5-15 um wide, and
0.1-0.2 um thick. These dimensions commonly are referred to as the fongitudinal, lateral, and transverse
dimensions of the cavity, respectively.

Asillustrated in Fig. 4.19, two flat, partially reflecting mirrors are directed toward each other to enclose
the Fabry-Perot resonator cavity. The mirror facets are constructed by making two parallel clefts along
natural cleavage planes of the semiconductor crystal. The purpose of the mirrors is to establish a strong
optical feedback in the longitudinal direction. This feedback mechanism converts the device into an
oscillator (and hence a light emitter) with a gain mechanism that compensates for optical losses in the
cavity at certain resonant optical frequencies. The sides of the cavity are simply formed by roughing the
edges of the device to reduce unwanted emissions in the lateral directions.

As the light reflects back and forth within the Fabry-Perot cavity, the electric fields of the light
interfere on successive round trips. Those wavelengths that are integer multiples of the cavity length
interfere constructively so that their amplitudes add when they exit the device through the right-
hand facet. All other wavelengths interfere destructively and thus cancel themselves out. The optical
frequencies at which constructive interference occurs are the resonant frequencies of the cavity.
Consequently, spontaneously emitted photons that have wavelengths at these resonant frequencies
reinforce themselves after multiple trips through the cavity so that their optical field becomes very
strong. The resonant wavelengths are called the longitudinal modes of the cavity because they resonate
along the length of the cavity.

Figure 4.20 illustrates the behavior of the resonant wavelengths for three values of the mirror reflectivity.
The plots give the relative intensity as a function of the wavelength relative to the cavity length. As
can be seen from Fig. 4.20, the width of the resonances depends on the value of the refectivity. That
is, the resonances become sharper as the reflectivity
increases. Chapter 10 provides further details on the
operational theory of Fabry-Perot cavities or etalons.

In another laser diode type, commonly referred
to as the distributed-feedback (DFB) laser,"*%% the
cleaved facets are not required for optical feedback.

Fabry-Perot cavity

—

Transmited A typical DFB laser configuration is shown in
vaves will  Bjo 421 The fabrication of this device is similar to
7 add in phase : S0
7 the Fabry-Perot types, except that the lasing action is
. "' obtained from Bragg reflectors (gratings) or periodic
Reflections in variations of the refractive index (called distributed-
the cavity

feedback corrugations), which are incorporated into
the multilayer structure along the length of the diode.
This is discussed in more detail in Sec. 4.3.6.

In general, the full optical output is needed only
from the front facet of the laser—that is, the one to be
aligned with an optical fiber. In this case, a dielectric
reflector can be deposited on the rear laser facet to
reduce the optical loss in the cavity, to reduce the
threshold current density (the point at which lasing

N /D

Reflecting facets

Fig. 4.19 Two parallel light-reflecting
mirrored surfaces define a
Fabry-Perot resonator cavity.

starts), and to increase the external quantum efficiency. Reflectivities greater than 98 percent have been
achieved with a six-layer reflector.
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Fig. 4.18 Fabry-Perot resonator cavity for a laser diode. The cleaved crystal ends function

as partially reflecting mirrors. The unused end (the rear facet) can be coated with
a dielectric reflector to reduce optical loss in the cavity. Note that the light beam
emerging from the laser forms a vertical ellipse, even though the lasing spot at

the active-area facet is a horizontal ellipse.
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6. Explain internal quantum efficiency and power in detail for LED. [10] COz L2

4.2.3 Quantum Efficiency and LED Power

An excess of electrons and holes in p- and n-type material, respectively (referred to as minority carriers)
is created in a semiconductor light source by carrier injection at the device contacts. The excess densities
of electrons n and holes p are equal, since the injected carriers are formed and recombine in pairs in
accordance with the requirement for charge neutrality in the crystal. When carrier injection stops, the
carrier density returns to the equilibrium value. In general, the excess carrier density decays exponentially
with time according to the relation

n=ne"" (4.6)

where 1 is the initial injected excess electron density and the time constant 7is the carrier lifetime. This
lifetime is one of the most important operating parameters of an electro-optic device. Its value can range
from milliseconds to fractions of a nanosecond depending on material composition and device defects.

The excess carriers can recombine either radiatively or nonradiatively. In radiative recombination
a photon of energy hv, which is approximately equal to the bandgap energy, is emitted. Nonradiative
recombination effects include optical absorption in the active region (self-absorption), carrier
recombination at the heterostructure interfaces, and the Auger process in which the energy released during
an electron—hole recombination is transferred to another carrier in the form of kinetic energy.

When there is a constant current flow into an LED, an equilibrium condition is established. That is, the
excess density of electrons nand holes p is equal since the injected carriers are created and recombined
in pairs such that charge neutrality is maintained within the device. The total rate at which carriers are
generated is the sum of the externally supplied and the thermally generated rates. The externally supplied
rate is given by J/gd, where Jis the current density in A/cm?, g is the electron charge, and dis the thickness
of the recombination region. The thermal generation rate is given by n/t. Hence, the rate equation for
carrier recombination in an LED can be written as

an = J_n 4.7
d qd 7
The equilibrium condition is found by setting Eq. (4.7) equal to zero, yielding
n=J% 4.8)

qd

This relationship gives the steady-state electron density in the active region when a constant current is
flowing through it.

The internal quantum efficiency in the active region is the fraction of the electron—hole pairs that
recombine radiatively. If the radiative recombination rate is A, and the nonradiative recombination rate

is A, then the internal quantum efficiency 1, is the ratio of the radiative recombination rate to the total
recombination rate:
R
ninl = £ 4.9)
RI' £ Rll’

For exponential decay of excess carriers, the radiative recombination lifetime is 7, = n/R, and the
nonradiative recombination lifetime is 7, = n/A,,. Thus the internal quantum efficiency can be expressed

nr

as ]
T

. S 4.10

Mint l1+7 /5, 1 ¢ g

where the bulk recombination lifetime tis

4.11)

In general, 7, and 7, are comparable for direct-bandgap semiconductors, such as GaAlAs and InGaAsP.
This also means that R, and R,, are similar in magnitude, so that the internal quantum efficiency is about
50 percent for simple homojunction LEDs. However, LEDs having double-heterojunction structures can
have quantum efficiencies of 60—-80 percent. This high efficiency is achieved because the thin active regions
of these devices mitigate the self-absorption effects, which reduces the nonradiative recombination rate.

If the current injected into the LED is /, then the total number of recombinations per second is

R.+ R, =14q (4.12)

Substituting Eq. (4.12) into Eq. (4.9) then yields R, = n;, //g. Noting that R, is the total number of

photons generated per second and that each photon has an energy hv, then the optical power generated
internally to the LED is

/ hel
P = i _— hv = L — 4.1 3
nt nlnt q nmt ql ( )



Confinement layer

- Emitted
o waves

Light-generating o, f i
and guiding region —

B -—— LED
Reflected wave facet

Confinement layer

Fig. 4.15 Only light falling within a cone defined by the critical angle ¢, will be emitted
from an optical source.

Not all internally generated photons will exit the device. To find the emitted power, one needs to
consider the external quantum efficiency 1.,,. This is defined as the ratio of the photons emitted from the
LED to the number of internally generated photons. To find the external quantum efficiency, we need
to take into account reflection effects at the surface of the LED. As shown in Fig. 4.15 and described in
Sec. 2.2, at the interface of a material boundary only that fraction of light falling within a cone defined
by the critical angle ¢, will cross the interface. From Eq. (2.18), we have that ¢, = sin™' (n,/n,). Here, n,
is the refractive index of the semiconductor material and n, is the refractive index of the outside material,
which nominally is air with n, = 1.0. The external quantum efficiency can then be calculated from the
expression

1 (¢ ;
Mo =5 |y T@)@rsing) oo (4.14)

where T(¢) is the Fresnel transmission coefficient or Fresnel transmissivity. This factor depends on

the incidence angle ¢, but, for simplicity, we can use the expression for normal incidence, which
£ 18,22
is!®

T(0)= il 'l (4.15)

(n, +n,)’

Assuming the outside medium is air and letting n, = n, we have T(0) =4n/(n+ 1)>. The external quantum
efficiency is then approximately given by

1

== = 4,
i+ 1) (4.16)
From this, it follows that the optical power emitted from the LED is
P
P= ext Fi‘m . - (4.17)

n(n+1)>
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a. Consider a 30-km long optical fiber that has an attenuation of 0.4 dB/km at 1310 [06]  COI
nm. Find the optical output power Pout if 200 mW of optical power is launched

into the fiber.

b. Consider a multimode step-index optical fiber that has a core radius of 25 um, a (047 o/
core index of 1.48, and an index difference A = 0.01. The number of modes M =
760. Find the percentage of optical power that propagates in the cladding at 840

nm.

Example 3.2 As Sec. 1.3 describes, optical powers
are commonly expressed in units of dBm, which is the
decibel power level referred to 1 mW. Consider a 30-km
long optical fiber that has an attenuation of 0.4 dB/km at
13 10 nm. Suppose we want to find the optical output power

P, if 200 uW of optical power is launched into the fiber.
We first express the input power in dBm units:

P, (dBm) = 10 log[w]
m

6
—10 log[ZOOx 107 W

=-7.0 dBm
1x10°W

Example 2.10 Consider a multimode step-index
optical fiber that has a core radius of 25 um, a core
index of 1.48, and an index difference A = 0.01. Find
the percentage of optical power that propagates in the
cladding at 840 nm.

Solution: From Egs. (2.23)and (2.28), at an operat-
ing wavelength of 840 nm the value of Vis

27ra J—A_Zxx25pmxl48m

0.84 um

=39

From Eq. (3.1¢) with P(0) = P;, and P(z) = P,

out

the

output power level (in dBm) at z = 30 km is

Im

IOIOg[ B W ):| oz

= —7.0 dBm — (0.4 dB/km) (3 Ok )
= -19.0 dBm

P, (dBm) = 10 lo [ °"‘(w)]
: W

In unit of watts, the output power is

P30 km) = 1011 mW) = 12.6 x 10> mW
=12.6 uW

Using Eq. (2.28), the total number of modes is

e
M = — =760
2
From Eq. (2.29) we have
Pﬂ -4 o0

3J_

Thus approximately 5 percent of the optical power
propagates in the cladding. If A is decreased to 0.03 in
order to lower the signal dispersion (see Chapter 3), then
there are 242 modes in the fiber and about 9 percent of
the power propagates in the cladding.

N
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