

USN

INTERNAL ASSESSMENT TEST – II

Sub: Intelligent Systems and Machine Learning Algorithms Code: BEC515A

Date: 14/ 12 / 2024 Duration: 90 mins Max Marks: 50 Sem: V Branch: ECE

Answer any 5 full questions

 Marks CO RBT

1 a) What are the key differences between informed search and uninformed search

strategies?

Informed search in AI is a type of search algorithm that uses additional

information to guide the search process, allowing for more efficient problem-

solving compared to uninformed search algorithms. This information can be

in the form of heuristics, estimates of cost, or other relevant data to prioritize

which states to expand and explore. Examples of informed search algorithms

include A* search, Best-First search, and Greedy search.

Uninformed search in AI refers to a type of search algorithm that does not

use additional information to guide the search process. Instead, these

algorithms explore the search space in a systematic, but blind, manner without

considering the cost of reaching the goal or the likelihood of finding a

solution. Examples of uninformed search algorithms include Breadth-First

search (BFS), Depth-First search (DFS), and Depth-Limited search.

Parameters Informed Search Uninformed Search

Known as
It is also known as

Heuristic Search.

It is also known as Blind

Search.

Using

Knowledge

It uses knowledge for

the searching process.

It doesn’t use knowledge

for the searching process.

Performance
It finds a solution

more quickly.

It finds solution slow as

compared to an informed

search.

Completion
It may or may not be

complete.
It is always complete.

Cost Factor Cost is low. Cost is high.

Time

It consumes less time

because of quick

searching.

It consumes moderate

time because of slow

searching.

Efficiency It is more efficient as it It is comparatively less

[5]

 [5] CO3 L2

takes into account cost

and performance in the

form of heuristic

function.

efficient as entire graph/

tree is searched.

Computational

requirements

Computational

requirements are

lessened.

Comparatively higher

computational

requirements.

Size of search

problems

Have a wide scope in

terms of handling large

search problems.

Solving a massive search

task is challenging.

Examples of

Algorithms

• Greedy Search

• A* Search

• AO* Search

• Hill Climbing

Algorithm

• Depth First Search

(DFS)

• Breadth First Search

(BFS)

b) In what scenarios might greedy best-first search fail to find an optimal

solution?
Greedy search algorithms, while efficient in many scenarios, face significant

limitations that can hinder their effectiveness in complex problem-solving

environments.

1) Getting stuck at local minima

One of the primary challenges of greedy search is the tendency to get

trapped in local optima. This occurs when the algorithm consistently

selects the locally optimal choice at each step, which may not lead to

the best overall solution. For instance, in scenarios where the goal is

to minimize costs, a greedy approach might choose the cheapest

option available at each decision point. However, this can result in a

suboptimal global solution, as it fails to consider

Example: In a travel planning scenario, a greedy algorithm might

select the least expensive flight without considering the overall

itinerary, potentially leading to higher costs in other areas, such as

accommodation or car rentals.

2) Inflexibility in Complex Situations: Greedy algorithms can also

exhibit inflexibility when faced with complex problems that involve

multiple variables and constraints. In situations where itineraries have

numerous segments and interdependencies, relying solely on a greedy

approach may not yield satisfactory results. For example, when

planning a trip that includes flights, hotels, and car rentals, the initial

greedy choice may not account for the cumulative impact of these

decisions on the overall travel experience.

3) Risk of Premature Commitment:Another significant challenge is the

risk of premature commitment to suboptimal solutions. Greedy

algorithms often make decisions based on immediate rewards, which

can lead to a plateau in performance if the chosen path does not align

with long-term goals. For instance, if an algorithm selects a reward

function that appears promising initially but fails to deliver sustained

benefits, it may lock onto a suboptimal strategy.

OR

Limitations of greedy best-first search

1. Incomplete: GBFS may fail to find a solution if it becomes trapped in

a local optimum or dead-end, as it does not consider backtracking.

2. Non-Optimal: The algorithm is not guaranteed to find the shortest or

best path. It only focuses on immediate gains (greedily choosing the

nearest node), which may lead to suboptimal solutions.

3. Heuristic Dependency: The efficiency and success of GBFS heavily

rely on the quality of the heuristic. A poor heuristic can lead to

inefficient searches.

2 a) How does the f(n)=g(n)+h(n) formula in A* search combine path cost and

heuristic value?

The core of the A* algorithm is based on cost functions and heuristics. It uses

two main parameters:

g(n): The actual cost from the starting node to any node n.

h(n): The heuristic estimated cost from node n to the goal. This is where A*

integrates knowledge beyond the graph to guide the search.

The sum, f(n)=g(n)+h(n)

f(n)=g(n)+h(n), represents the total estimated cost of the cheapest solution.

The A* algorithm functions by maintaining a priority queue (or open set) of

all possible paths along the graph, prioritizing them based on their f(n) values.

The steps of the algorithm are as follows:

1. Initialization: Start by adding the initial node to the open set with its f(n).

2. Loop: While the open set is not empty, the node with the lowest f(n) value is

removed from the queue.

3. Goal Check: If this node is the goal, the algorithm terminates and returns the

discovered path.

4. Node Expansion: Otherwise, expand the node (find all its neighbors),

calculating g, h, and f values for each neighbor. Add each neighbor to the

open set if it's not already present, or if a better path to this neighbor is found.

5. Repeat: The loop repeats until the goal is reached or if there are no more

nodes in the open set, indicating no available path.

b) What is the main distinction between A* search and greedy best-first search?

Best-First Search: Best-First search is a searching algorithm used to find the

shortest path which uses distance as a heuristic. The distance between the

starting node and the goal node is taken as heuristics. It defines the evaluation

function for each node n in the graph as f(n) = h(n) where h(n) is heuristics

function.

A*Search: A*search is a searching algorithm used to find the shortest path

which calculates the cost of all its neighboring nodes and selects the minimum

cost node. It defines the evaluation function f(n) = g(n) + h(n) where, h(n) is

heuristics function and g(n) is the past knowledge acquired while searching.

[5] CO3 L3

[5]

S Parameters Best-First Search A* Search

 1
Evaluation
Function

The evaluation
function for best-first
search is f(n) = h(n).

The evaluation
function for A*

search is f(n) = h(n) +
g(n).

 2 Past Knowledge

This search
algorithm does not

involve past
knowledge.

This search
algorithm involves
past knowledge.

 3 Completeness
Best-first search is

not complete.
A* search is
complete.

 4 Optimal

Best-first search is
not optimal as the

path found may not
be optimal.

A* search is optimal
as the path found is

always optimal.

 5
Time and Space

Complexity

Its time complexity is
O(bm) and space

complexity can be
polynomial.

where b is the
branching and m is
the maximum depth
of the search tree

Its time complexity is
O(bm) and space

complexity is also
O(bm).

where b is the
branching and m is
the maximum depth
of the search tree

3 a) Explain the common techniques for generating heuristics?

i) Generating admissible heuristics from relaxed problems

ii) Generating admissible heuristics from subproblems: Pattern databases

b) How do local search algorithms differ from global search methods in their

approach to finding solutions in state spaces?

Local search in AI refers to a family of optimization algorithms that are used

to find the best possible solution within a given search space. Unlike global

search methods that explore the entire solution space, local search algorithms

[5] CO3 L2

[5]

focus on making incremental changes to improve a current solution until they

reach a locally optimal or satisfactory solution. This approach is useful in

situations where the solution space is vast, making an exhaustive search

impractical.

[5]

4
a) Explain hill climbing algorithm in AI?

Hill climbing is a widely used optimization algorithm in Artificial

Intelligence (AI) that helps find the best possible solution to a given

problem. As part of the local search algorithms family, it is often

applied to optimization problems where the goal is to identify the

optimal solution from a set of potential candidates.

It is a form of local search, which means it focuses on finding the

optimal solution by making incremental changes to an existing solution

and then evaluating whether the new solution is better than the current

one. The process is analogous to climbing a hill where you continually

seek to improve your position until you reach the top, or local

maximum, from where no further improvement can be made.

Hill climbing is a fundamental concept in AI because of its simplicity,

efficiency, and effectiveness in certain scenarios, especially when

dealing with optimization problems or finding solutions in large search

spaces.

n the Hill Climbing algorithm, the process begins with an initial

solution, which is then iteratively improved by making small,

incremental changes. These changes are evaluated by a heuristic

function to determine the quality of the solution. The algorithm

continues to make these adjustments until it reaches a local

maximum—a point where no further improvement can be made with

the current set of moves.

Algorithm:

1. Initial State: Start with an arbitrary or random solution (initial state).

2. Neighboring States: Identify neighboring states of the current solution

by making small adjustments (mutations or tweaks).

3. Move to Neighbor: If one of the neighboring states offers a better

solution (according to some evaluation function), move to this new state.

4. Termination: Repeat this process until no neighboring state is better

than the current one. At this point, you’ve reached a local maximum or

minimum (depending on whether you’re maximizing or minimizing).

b) With the help of state space diagram, explain the different regions in

state space.

The optimal solution in the state-space diagram is represented by the state

where the objective function reaches its maximum value, also known as

the global maximum.

[5] CO3 L3

 [5]

Key Regions in the State-Space Diagram

1. Local Maximum: A local maximum is a state better than its neighbors

but not the best overall. While its objective function value is higher than

nearby states, a global maximum may still exist.

2. Global Maximum: The global maximum is the best state in the state-

space diagram, where the objective function achieves its highest value.

This is the optimal solution the algorithm seeks.

3. Plateau/Flat Local Maximum: A plateau is a flat region where

neighboring states have the same objective function value, making it

difficult for the algorithm to decide on the best direction to move.

4. Ridge: A ridge is a higher region with a slope, which can look like a

peak. This may cause the algorithm to stop prematurely, missing better

solutions nearby.

5. Current State: The current state refers to the algorithm’s position in the

state-space diagram during its search for the optimal solution.

6. Shoulder: A shoulder is a plateau with an uphill edge, allowing the

algorithm to move toward better solutions if it continues searching

beyond the plateau.

5 a) Define machine learning with respect to experience E, task T and performance

measure P.

A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.

For example, a computer program that learns to play checkers might improve

its performance as measured by its abiliry to win at the class of tasks

involving playing checkers games, through experience obtained by playing

games against itself. In general, to have a well-defined learning problem, we

must identity these three features: the class of tasks, the measure of

performance to be improved, and the source of experience.

b) identify the three features E, T and P for the given examples:

i) Checkers learning problem

[3] CO4 L2

[7]

ii) Handwriting recognition learning problem

Task T: recognizing and classifying handwritten words within images

Performance measure P: percent of words correctly classified

Training experience E: a database of handwritten words with given

classifications

iii) Robot driving learning problem

6
Explain the steps involved in designing the learning system in detail

Steps for Designing Learning System are:

Step 1) Choosing the Training Experience: The very important and first task is to

choose the training data or training experience which will be fed to the Machine

Learning Algorithm. It is important to note that the data or experience that we fed to

the algorithm must have a significant impact on the Success or Failure of the Model.

So Training data or experience should be chosen wisely.

Below are the attributes which will impact on Success and Failure of Data:

• The training experience will be able to provide direct or indirect feedback

regarding choices. For example: While Playing chess the training data will

provide feedback to itself like instead of this move if this is chosen the chances

of success increases.

• Second important attribute is the degree to which the learner will control the

sequences of training examples. For example: when training data is fed to the

machine then at that time accuracy is very less but when it gains experience

while playing again and again with itself or opponent the machine algorithm

will get feedback and control the chess game accordingly.

• Third important attribute is how it will represent the distribution of examples

over which performance will be measured. For example, a Machine learning

algorithm will get experience while going through a number of different cases

and different examples. Thus, Machine Learning Algorithm will get more and

more experience by passing through more and more examples and hence its

performance will increase.

[10] CO4 L2

Step 2- Choosing target function: The next important step is choosing the target

function. It means according to the knowledge fed to the algorithm the machine

learning will choose NextMove function which will describe what type of legal moves

should be taken. For example : While playing chess with the opponent, when

opponent will play then the machine learning algorithm will decide what be the

number of possible legal moves taken in order to get success.

Step 3- Choosing Representation for Target function: When the machine algorithm

will know all the possible legal moves the next step is to choose the optimized move

using any representation i.e. using linear Equations, Hierarchical Graph

Representation, Tabular form etc. The NextMove function will move the Target move

like out of these move which will provide more success rate. For Example : while

playing chess machine have 4 possible moves, so the machine will choose that

optimized move which will provide success to it.

Step 4- Choosing Function Approximation Algorithm: An optimized move cannot

be chosen just with the training data. The training data had to go through with set of

example and through these examples the training data will approximates which steps

are chosen and after that machine will provide feedback on it. For Example : When a

training data of Playing chess is fed to algorithm so at that time it is not machine

algorithm will fail or get success and again from that failure or success it will measure

while next move what step should be chosen and what is its success rate.

Step 5- Final Design: The final design is created at last when system goes from

number of examples , failures and success , correct and incorrect decision and what

will be the next step etc. Example: DeepBlue is an intelligent computer which is ML-

based won chess game against the chess expert Garry Kasparov, and it became the first

computer which had beaten a human chess expert.

7 Find maximally specific hypothesis using Find-S algorithm. How many concepts are

possible for this instance space. How many syntactically and semantically distinct

hypotheses can be expressed for this example if the attribute values of sky=3,

Airtemp=2, Humidity=2, wind=2, water=2 and Forecast=2.

Step – 1 of Find-S Algorithm

Step 2 of Find-S Algorithm First iteration

h0 = (ø, ø, ø, ø, ø, ø, ø)

X1 = <Sunny, Warm, Normal, Strong, Warm, Same>

h1 = <Sunny, Warm, Normal, Strong, Warm, Same>

Step 2 of Find-S Algorithm Second iteration

[10] CO4 L3

h1 = <Sunny, Warm, Normal, Strong, Warm, Same>

X2 = <Sunny, Warm, High, Strong, Warm, Same>

h2 = <Sunny, Warm, ?, Strong, Warm, Same>

Step 2 of Find-S Algorithm Third iteration

h2 = <Sunny, Warm, ?, Strong, Warm, Same>

X3 = <Rainy, Cold, High, Strong, Warm, Change> – No

X3 is Negative example Hence ignored

h3 = <Sunny, Warm, ?, Strong, Warm, Same>

Step 2 of Find-S Algorithm Fourth iteration

h3 = <Sunny, Warm, ?, Strong, Warm, Same>

X4 = <Sunny, Warm, High, Strong, Cool, Change>

h4 = <Sunny, Warm, ?, Strong, ?, ?>

Step 3

The final maximally specific hypothesis is <Sunny, Warm, ?, Strong, ?, ?>

CCI HOD

