

INTERNAL ASSESSMENT TEST – II

Sub:	Intelligent Systems and	Machine Learn	ning Algorit	hms				Code:	BEC515A
Date:	14/ 12 / 2024	Duration:	90 mins	Max Marks:	50	Sem:	V	Branch:	ECE

Answer any 5 full questions CO RBT Marks 1 What are the key differences between informed search and uninformed search [5] a) strategies? [5] CO3 L2 Informed search in AI is a type of search algorithm that uses additional information to guide the search process, allowing for more efficient problemsolving compared to uninformed search algorithms. This information can be in the form of heuristics, estimates of cost, or other relevant data to prioritize which states to expand and explore. Examples of informed search algorithms include A* search, Best-First search, and Greedy search. **Uninformed search** in AI refers to a type of search algorithm that does not use additional information to guide the search process. Instead, these algorithms explore the search space in a systematic, but blind, manner without considering the cost of reaching the goal or the likelihood of finding a solution. Examples of uninformed search algorithms include Breadth-First search (BFS), Depth-First search (DFS), and Depth-Limited search. **Parameters Informed Search Uninformed Search** It is also known as It is also known as Blind Known as Heuristic Search. Search. Using It uses knowledge for It doesn't use knowledge the searching process. for the searching process. Knowledge It finds solution slow as It finds a solution compared to an informed Performance more quickly. search. It may or may not be Completion It is always complete. complete. Cost Factor Cost is low. Cost is high. It consumes less time It consumes moderate Time because of quick time because of slow searching. searching.

	takes into account cost and performance in the form of heuristic function.	efficient as entire graph/ tree is searched.
Computational requirements	Computational requirements are lessened.	Comparatively higher computational requirements.
Size of search problems	Have a wide scope in terms of handling large search problems.	Solving a massive search task is challenging.
Examples of Algorithms	 Greedy Search A* Search AO* Search Hill Climbing Algorithm 	 Depth First Search (DFS) Breadth First Search (BFS)

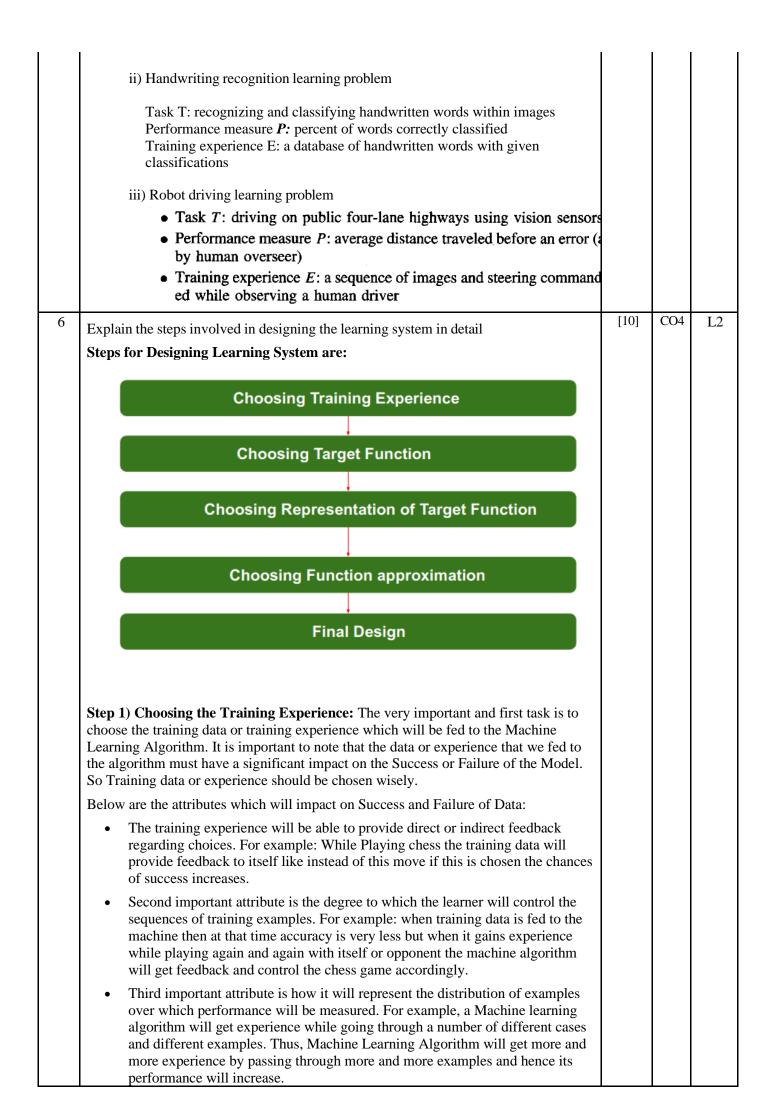
b) In what scenarios might greedy best-first search fail to find an optimal solution?

Greedy search algorithms, while efficient in many scenarios, face significant limitations that can hinder their effectiveness in complex problem-solving environments.

1) Getting stuck at local minima

One of the primary challenges of greedy search is the tendency to get trapped in local optima. This occurs when the algorithm consistently selects the locally optimal choice at each step, which may not lead to the best overall solution. For instance, in scenarios where the goal is to minimize costs, a greedy approach might choose the cheapest option available at each decision point. However, this can result in a suboptimal global solution, as it fails to consider Example: In a travel planning scenario, a greedy algorithm might select the least expensive flight without considering the overall itinerary, potentially leading to higher costs in other areas, such as accommodation or car rentals.

- 2) Inflexibility in Complex Situations: Greedy algorithms can also exhibit inflexibility when faced with complex problems that involve multiple variables and constraints. In situations where itineraries have numerous segments and interdependencies, relying solely on a greedy approach may not yield satisfactory results. For example, when planning a trip that includes flights, hotels, and car rentals, the initial greedy choice may not account for the cumulative impact of these decisions on the overall travel experience.
- 3) Risk of Premature Commitment: Another significant challenge is the


	 risk of premature commitment to suboptimal solutions. Greedy algorithms often make decisions based on immediate rewards, which can lead to a plateau in performance if the chosen path does not align with long-term goals. For instance, if an algorithm selects a reward function that appears promising initially but fails to deliver sustained benefits, it may lock onto a suboptimal strategy. OR Limitations of greedy best-first search Incomplete: GBFS may fail to find a solution if it becomes trapped in a local optimum or dead-end, as it does not consider backtracking. Non-Optimal: The algorithm is not guaranteed to find the shortest or best path. It only focuses on immediate gains (greedily choosing the nearest node), which may lead to suboptimal solutions. Heuristic Dependency: The efficiency and success of GBFS heavily rely on the quality of the heuristic. A poor heuristic can lead to inefficient searches. 			
2	a) How does the f(n)=g(n)+h(n) formula in A* search combine path cost and heuristic value?	[5]	CO3	L3
	 The core of the A* algorithm is based on cost functions and heuristics. It uses two main parameters: g(n): The actual cost from the starting node to any node n. h(n): The heuristic estimated cost from node n to the goal. This is where A* integrates knowledge beyond the graph to guide the search. The sum, f(n)=g(n)+h(n) f(n)=g(n)+h(n), represents the total estimated cost of the cheapest solution. The A* algorithm functions by maintaining a priority queue (or open set) of all possible paths along the graph, prioritizing them based on their f(n) values. The steps of the algorithm are as follows: 1. Initialization: Start by adding the initial node to the open set with its f(n). 2. Loop: While the open set is not empty, the node with the lowest f(n) value is removed from the queue. 3. Goal Check: If this node is the goal, the algorithm terminates and returns the discovered path. 4. Node Expansion: Otherwise, expand the node (find all its neighbors), calculating g, h, and f values for each neighbor. Add each neighbor to the open set if it's not already present, or if a better path to this neighbor is found. 5. Repeat: The loop repeats until the goal is reached or if there are no more nodes in the open set, indicating no available path. 	[5]		
	 b) What is the main distinction between A* search and greedy best-first search? Best-First Search: Best-First search is a searching algorithm used to find the shortest path which uses distance as a heuristic. The distance between the starting node and the goal node is taken as heuristics. It defines the evaluation function for each node n in the graph as f(n) = h(n) where h(n) is heuristics function. A*Search: A*search is a searching algorithm used to find the shortest path which calculates the cost of all its neighboring nodes and selects the minimum cost node. It defines the evaluation function f(n) = g(n) + h(n) where, h(n) is heuristics function and g(n) is the past knowledge acquired while searching. 			

S	Parameters	Best-First Search	A* Search			
1	Evaluation Function	The evaluation function for best-first search is f(n) = h(n).	The evaluation function for A* search is f(n) = h(n) + g(n).			
2	Past Knowledge	This search algorithm does not involve past knowledge.	This search algorithm involves past knowledge.			
3	Completeness	Best-first search is not complete.	A* search is complete.			
4	Optimal	Best-first search is not optimal as the path found may not be optimal.	A* search is optimal as the path found is always optimal.			
		Its time complexity is O(b ^m) and space complexity can be polynomial. where b is the	Its time complexity is O(b ^m) and space complexity is also O(b ^m). where b is the			
5	Time and Space Complexity	branching and m is the maximum depth of the search tree	branching and m is the maximum depth of the search tree			
a) Explain the common	techniques for generating here	uristics?	[5]	CO3]
		ble heuristics from relaxed p ible heuristics from subprobl		[5]		
b		algorithms differ from glo plutions in state spaces?	bal search methods in their			
	to find the best possib	Ters to a family of optimization le solution within a given se xplore the entire solution spa	arch space. Unlike global			

focus on making incremental changes to improve a current solution until they reach a locally optimal or satisfactory solution. This approach is useful in		
situations where the solution space is vast, making an exhaustive search		
impractical.		1

		[5]	
a)	Explain hill climbing algorithm in AI?	[5]	CO3	L3
	Hill climbing is a widely used optimization algorithm in Artificial Intelligence (AI) that helps find the best possible solution to a given problem. As part of the local search algorithms family, it is often applied to optimization problems where the goal is to identify the optimal solution from a set of potential candidates.	[5]		
	It is a form of local search, which means it focuses on finding the optimal solution by making incremental changes to an existing solution and then evaluating whether the new solution is better than the current one. The process is analogous to climbing a hill where you continually seek to improve your position until you reach the top, or local maximum, from where no further improvement can be made.			
	Hill climbing is a fundamental concept in AI because of its simplicity, efficiency, and effectiveness in certain scenarios, especially when dealing with optimization problems or finding solutions in large search spaces.			
	n the Hill Climbing algorithm , the process begins with an initial solution, which is then iteratively improved by making small, incremental changes. These changes are evaluated by a heuristic function to determine the quality of the solution. The algorithm continues to make these adjustments until it reaches a local maximum —a point where no further improvement can be made with the current set of moves.			
	Algorithm:			
1.	Initial State: Start with an arbitrary or random solution (initial state).			
2.	Neighboring States : Identify neighboring states of the current solution by making small adjustments (mutations or tweaks).			
3.	Move to Neighbor : If one of the neighboring states offers a better solution (according to some evaluation function), move to this new state.			
4.	Termination : Repeat this process until no neighboring state is better than the current one. At this point, you've reached a local maximum or minimum (depending on whether you're maximizing or minimizing).			
b)	With the help of state space diagram, explain the different regions in state space.			
where	otimal solution in the state-space diagram is represented by the state the objective function reaches its maximum value, also known as bal maximum .			

objective function shoulder boulder global maximum "flat" local maximum "flat" local maximum state space			
 Key Regions in the State-Space Diagram Local Maximum: A local maximum is a state better than its neighbors but not the best overall. While its objective function value is higher than nearby states, a global maximum may still exist. Global Maximum: The global maximum is the best state in the state-space diagram, where the objective function achieves its highest value. This is the optimal solution the algorithm seeks. Plateau/Flat Local Maximum: A plateau is a flat region where neighboring states have the same objective function value, making it difficult for the algorithm to decide on the best direction to move. Ridge: A ridge is a higher region with a slope, which can look like a peak. This may cause the algorithm to stop prematurely, missing better solutions nearby. Current State: The current state refers to the algorithm's position in the state-space diagram during its search for the optimal solution. Shoulder: A shoulder is a plateau with an uphill edge, allowing the algorithm to move toward better solutions if it continues searching beyond the plateau. 			
 a) Define machine learning with respect to experience E, task T and performance measure P. A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. For example, a computer program that learns to play checkers might improve its performance as <i>measured by its abiliry to win</i> at the class of tasks involving <i>playing checkers games</i>, through experience <i>obtained</i> by <i>playing games against itself</i>. In general, to have a well-defined learning problem, we must identify these three features: the class of tasks, the measure of performance to be improved, and the source of experience. b) identify the three features E, T and P for the given examples: i) Checkers learning problem Task T: playing checkers Performance measure P: percent of games won against opponer Training experience E: playing practice games against itself 	[3]	CO4	L2

	It means					rithm the ma what type of	chine Elegal moves			
should be opponent number of	taken. F will play	hen								
will know using any Represent like out of playing ch	v all the per represent tation, Ta f these me ness mach	ossible lega tation i.e. us bular form o ove which w nine have 4	l moves the sing linear E etc. The Nex vill provide	next step equations, etMove fu more succ ves, so the	is to choo Hierarch Inction wi cess rate.	ose the optim	Target move e : while			
Step 4- C be chosen example a	hoosing just with and throug	Function A the training these exa	pproximati g data. The t amples the tr	i on Algor raining da raining da	ata had to ta will ap	optimized r go through proximates y For Examp	which steps			
training d algorithm	ata of Pla will fail	ying chess i or get succe	is fed to alg	orithm so from tha	at that tin t failure o	me it is not n or success it				
Step 5- Fi	inal Desi	gn: The fina	al design is o	created at	last wher	n system goe rect decisior				
based wor	n chess ga	ame against		xpert Garr			which is ML- came the first			
I				. I						
<u> </u>	11			. 1.0. 1	1.1 17			F101	004	-
possible fo	or this inst	tance space.	How many	syntactica	ally and s	ow many con emantically	distinct	[10]	CO4	
possible fo hypotheses	or this inst s can be e	tance space. xpressed for	How many	syntacticates syntacticates syntacticates and syntacticates and syntacticates syntactes syntactes syntactes syntactes syntactes syntactes synt	ally and s ttribute v		distinct	[10]	CO4	
possible fo hypotheses	or this inst s can be e	tance space. xpressed for	How many r this examp	syntacticates syntacticates syntacticates and syntacticates and syntacticates syntactes syntactes syntactes syntactes syntactes syntactes synt	ally and s ttribute v	emantically alues of sky	distinct	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1	or this inst s can be e d, Humidi Sky Sunny	tance space. xpressed for ty=2, wind= <i>AirTemp</i> Warm	How many r this examp =2, water=2 <i>Humidity</i> Normal	syntactica ole if the a and Forec Wind Strong	ally and s ttribute v cast=2. <i>Water</i> Warm	emantically alues of sky <i>Forecast</i> Same	distinct =3, EnjoySport Yes	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3	r this inst s can be e c, Humidi Sky Sunny Sunny Rainy	tance space. xpressed for ty=2, wind= AirTemp Warm Warm Cold	How many r this examp =2, water=2 Humidity Normal High High	syntactica ole if the a and Forec <i>Wind</i> Strong Strong Strong	ally and s ttribute v cast=2. <i>Water</i>	emantically alues of sky <i>Forecast</i> Same Same Change	distinct =3, EnjoySport	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2	or this inst s can be e b, Humidi Sky Sunny Sunny	tance space. xpressed for ty=2, wind= AirTemp Warm Warm	How many r this examp =2, water=2 <i>Humidity</i> Normal High	syntactica ole if the a and Forec Wind Strong Strong	ally and s ttribute v cast=2. Water Warm Warm	emantically alues of sky <i>Forecast</i> Same Same	distinct =3, <u>EnjoySport</u> Yes Yes	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3	r this inst s can be e d, Humidi Sky Sunny Sunny Rainy Sunny Sunny	ance space. xpressed for ty=2, wind= <i>AirTemp</i> Warm Warm Cold Warm	How many r this examp =2, water=2 Humidity Normal High High	syntactica ole if the a and Forec <i>Wind</i> Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Same Change	distinct =3, EnjoySport Yes Yes No	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4	r this inst s can be e d, Humidi Sky Sunny Sunny Rainy Sunny Sunny	ance space. xpressed for ty=2, wind= <i>AirTemp</i> Warm Warm Cold Warm	How many r this examp =2, water=2 Humidity Normal High High	syntactica ole if the a and Forec <i>Wind</i> Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Same Change Change	distinct =3, EnjoySport Yes Yes No	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step – 1 of	r this inst s can be e d, Humidi Sky Sunny Sunny Sunny Sunny Find-S A Sky	ance space. xpressed for ty=2, wind= AirTemp Warm Cold Warm Igorithm AirTemp	How many r this examp =2, water=2 <i>Humidity</i> Normal High High High	syntactica ole if the a and Foreco Wind Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water	emantically alues of sky <i>Forecast</i> Same Same Change Change <i>Forecast</i>	distinct =3, EnjoySport Yes Yes No Yes	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step - 1 of Example 1 2	r this inst s can be e 2, Humidi Sky Sunny Sunny Rainy Sunny Find-S A	tance space. xpressed for ty=2, wind= <i>AirTemp</i> Warm Warm Cold Warm	How many r this examp =2, water=2 <i>Humidity</i> Normal High High High	syntactica ole if the a and Forec <i>Wind</i> Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm	emantically alues of sky Forecast Same Change Change Forecast Same	distinct =3, EnjoySport Yes No Yes EnjoySport	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step - 1 of Example 1 2 3	r this inst s can be e d, Humidi Sky Sunny Sunny Rainy Sunny Find-S A Sky Sunny Sunny Sunny Rainy	ance space. xpressed for ty=2, wind= AirTemp Warm Cold Warm Igorithm AirTemp Warm Warm Cold	How many r this examp =2, water=2 Humidity Normal High High High High Hormal	syntactica ole if the a and Foreco Wind Strong Strong Strong Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm Warm	emantically alues of sky <i>Forecast</i> Same Change Change <i>Forecast</i> Same Same Same	distinct =3, EnjoySport Yes No Yes EnjoySport Yes	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step - 1 of Example 1 2	r this inst s can be e 2, Humidi Sky Sunny Rainy Sunny Find-S A Sky Sunny Sunny	tance space. xpressed for ty=2, wind= <i>AirTemp</i> Warm Cold Warm Igorithm <i>AirTemp</i> Warm Warm	How many r this examp =2, water=2 Humidity Normal High High Humidity Normal High	syntactica ole if the a and Foreco Wind Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Change Change <i>Forecast</i> Same Same Same	distinct =3, EnjoySport Yes No Yes EnjoySport Yes Yes	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step - 1 of Example 1 2 3	r this inst s can be e d, Humidi Sky Sunny Sunny Rainy Sunny Find-S A Sky Sunny Sunny Rainy Sunny Sunny Sunny	ance space. xpressed for ty=2, wind= AirTemp Warm Cold Warm Igorithm AirTemp Warm Warm Cold Warm Cold Warm	How many r this examp =2, water=2 Humidity Normal High High High High High High	syntactica ole if the a and Foreco Wind Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm Warm Warm Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Change Change <i>Forecast</i> Same Same Change Change Change	distinct =3, EnjoySport Yes No Yes EnjoySport Yes Yes No	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step - 1 of Example 1 2 3	r this inst s can be e d, Humidi Sky Sunny Sunny Rainy Sunny Find-S A Sky Sunny Sunny Rainy Sunny Sunny Sunny	ance space. xpressed for ty=2, wind= AirTemp Warm Cold Warm Cold Warm Warm Cold Warm Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm	How many r this examp =2, water=2 Humidity Normal High High Humidity Normal High High High	syntactica ole if the a and Foreco Wind Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm Warm Warm Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Same Change Change <i>Forecast</i> Same Same Same Change Change	distinct =3, EnjoySport Yes No Yes EnjoySport Yes Yes No	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step – 1 of Example 1 2 3 4	r this inst s can be e 2, Humidi Sky Sunny Sunny Rainy Sunny Find-S A Sky Sunny Sunny Rainy Sunny Rainy Sunny Rainy Sunny Rainy Sunny	ance space. xpressed for ty=2, wind= AirTemp Warm Cold Warm Cold Warm Warm Cold Warm Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm	How many r this examp =2, water=2 Humidity Normal High High High High High High High So the most = <Ø, Ø, Ø	syntactica ole if the a and Foreco Wind Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm Warm Warm Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Same Change Change <i>Forecast</i> Same Same Same Change Change	distinct =3, EnjoySport Yes No Yes EnjoySport Yes Yes No	[10]	CO4	
possible fo hypotheses Airtemp=2 Example 1 2 3 4 Step - 1 of Example 1 2 3 4 Step 2 of F h0 = $(\emptyset, \emptyset, \emptyset)$	r this inst s can be e d, Humidi Sky Sunny Sunny Rainy Sunny Sunny Sunny Rainy Sunny Rainy Sunny Rainy Sunny I. Int ind-S Alg	AirTemp Warm Warm Cold Warm Cold Warm Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm	How many r this examp =2, water=2 Humidity Normal High High High High High High High So the most = <Ø, Ø, Ø	syntactica ole if the a and Foreco Wind Strong Stro	ally and s ttribute v cast=2. Water Warm Warm Cool Water Warm Warm Warm Warm Warm Warm	emantically alues of sky <i>Forecast</i> Same Same Change Change <i>Forecast</i> Same Same Same Change Change	distinct =3, EnjoySport Yes No Yes EnjoySport Yes Yes No	[10]	CO4	

h1 = <sunny, normal,="" same="" strong,="" warm,=""></sunny,>	Τ	
X2 = <sunny, high,="" same="" strong,="" warm,=""></sunny,>		
h2 = <sunny, ?,="" same="" strong,="" warm,=""></sunny,>		
Step 2 of Find-S Algorithm Third iteration		
h2 = <sunny, ?,="" same="" strong,="" warm,=""></sunny,>		
$X3 = \langle Rainy, Cold, High, Strong, Warm, Change \rangle - No$		
X3 is Negative example Hence ignored		
h3 = <sunny, ?,="" same="" strong,="" warm,=""></sunny,>		
Step 2 of Find-S Algorithm Fourth iteration		
h3 = <sunny, ?,="" same="" strong,="" warm,=""></sunny,>		
X4 = <sunny, change="" cool,="" high,="" strong,="" warm,=""></sunny,>		
h4 = <sunny, ?="" ?,="" strong,="" warm,=""></sunny,>		
Step 3		
The final maximally specific hypothesis is <sunny, ?="" ?,="" strong,="" warm,=""></sunny,>		

HOD