

	$\delta D = 0$			
Ri(t)	$0 + L\frac{di(t)}{dt} + \frac{1}{C}\int_{0+}^{\infty} i(\tau)d\tau = 0$			
⇒	$Ri(t) + L\frac{di(t)}{dt} + v_C(t) = 0$			
At $t = 0^+$ equation (4)	mi) com			
Ri (0'	$L + L \frac{di\left(0^{+}\right)}{dt} + v_{C}\left(0^{+}\right) = 0$			
⇒	$R \times 2 + L \frac{di(0^+)}{dt} + 0 = 0$			
⇒	$20 + \frac{di(0^+)}{dt} = 0$			
⇒	$\frac{di}{dt} \frac{(0^+)}{dt} = -20 \text{ A/sec}$			
Differentiating equati	on (4.3) with respect to t, we get			
	$R\frac{di}{dt} + L\frac{d^2i}{dt^2} + \frac{i}{C} = 0$			
At $t = 0^+$, we get				
$R \frac{di}{dt}$	$\frac{+1}{t} + L \frac{d^2 i (0^+)}{dt^2} + \frac{i (0^+)}{C} = 0$			
⇒ R×	$(-20) + L \frac{d^2i(0^+)}{dt^2} + \frac{2}{C} = 0$			
Hence,	$d^{2}i(0^{+}) = 0.0106 \text{ A } imm^{2}$			
Trence,	$\frac{1}{dt^2} \approx -2 \times 10^{-4} \text{ A/sec}^2 \qquad6\text{M}$			
2. In the network shown, t	he input voltage $V1(t) = e^{-t}$ for $t \ge 0$ and is zero for all $t < 0$. If	[10]	CO3	L3
the capacitor in the netw	ork is initially uncharged, determine $\frac{dv}{dt}$, $\frac{d^2v}{dt^2}$ and $\frac{d^3v}{dt^3}$ at t=0 ⁺			
at t=0 ⁺ .				
100				
10Ω	o,			
R_1				
v_1 $+$ $\frac{1}{20}$ F	$\perp C R_2 \leq 20\Omega V_2$			
20	T			
8.7				
R_1 $v_2(t)$				
$v_1(t)$ $+$ C	\geqslant R_2 v_2			
	} -			
] ,
2M				

	$y_0(t) - y_0(t) = dy_0(t) - y_0(t)$			
	$\frac{v_2(t) - v_1(t)}{R_1} + C\frac{dv_2(t)}{dt} + \frac{v_2(t)}{R_2} = 0$			
	$\Rightarrow \left(\frac{1}{R_1} + \frac{1}{R_2}\right) v_2(t) + C \frac{dv_2(t)}{dt} = \frac{v_1(t)}{R_1}$			
	$(R_1 - R_2)^{-2\sqrt{\gamma}}$ dt R_1			
	(ii)			
	2M			
	Putting $t = 0^+$, we get			
	ALC IN THE STATE OF THE STATE O			
	$0.15v_2(0^+) + 0.05\frac{dv_2(0^+)}{dt} = 0.1$			
	\Rightarrow 0.15 × 0 + 0.05 $\frac{dv_2(0^+)}{dt}$ = 0.1			
	at			
	$\Rightarrow \frac{dv_2(0^+)}{dt} = \frac{0.1}{0.05} = 2 \text{ Volts/ sec}$			
	3M			
	IVI			
	Differentiating equation (4.5) with respect to t , we get			
	$0.15 \frac{dv_2}{dt} + 0.05 \frac{d^2v_2}{dt^2} = -0.1e^{-t}$			
	Putting $t = 0^+$ in equation (4.6), we find that			
	$\frac{d^2v_2(0^+)}{dt^2} = \frac{-0.1 - 0.3}{0.05} = -8 \text{ Volts/sec}^2$			
	Again differentiating equation (4.6) with respect to t , we get			
	소리에 2000년에 의미되었다면 이번에 제한 사람이 되었다면 하면 되었다. 이 이 사람들이 되었다면 되었다면 되었다면 되었다.			
	$0.15\frac{d^2v_2}{dt^2} + 0.05\frac{d^3v_2}{dt^3} = 0.1e^{-t}$			
	Putting $t = 0^+$ in equation (4.7) and solving for $\frac{d^3v_2}{dt^3}(0^+)$, we find that			
	120			
	$\frac{d^3v_2(0^+)}{dt^3} = \frac{0.1 + 1.2}{0.05} = 26 \text{ Volts/sec}^3$			
	3M			
3.	Refer the circuit shown . Find $i1(0_+)$ and $i_L(0_+)$. The circuit is in steady state for t< 0. (Use	[10]	CO3	L3
	any method)			
	L=1H			
	\downarrow^{i_1} \downarrow^{i_L}			
	$i_S=2A$ \uparrow \downarrow $t=0$ \downarrow 1Ω			
	•	1		

.....3M

$$i_L(0^-) = \frac{2 \times 1}{1+1} = 1A$$

.....2M

Since the current in an inductor cannot change instantaneously, we have

$$i_L(0^+) = i_L(0^-) = 1A$$

At $t = 0^-$, $i_1(0^-) = 2 - 1 = 1$ A. Please note that the current in a resistor can change instantaneously. Since at $t = 0^+$, the switch is just closed, the voltage across R_1 will be equal to zero because of the switch being short circuited and hence,

$$i_1(0^+) = 0A$$

Thus, the current in the resistor changes abruptly form 1A to 0A.

.....5M

4. State and prove initial and final value theorems.

The initial-value theorem allows us to find the initial value x(0) directly from its Laplace transform X(s).

If x(t) is a causal signal,

then.

$$x(0) = \lim_{s \to \infty} sX(s)$$

Proof:

To prove this theorem, we use the time differentiation property.

$$\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = sX(s) - x(0) = \int_{0}^{\infty} \frac{dx}{dt} e^{-st} dt$$

L3

CO₄

[10]

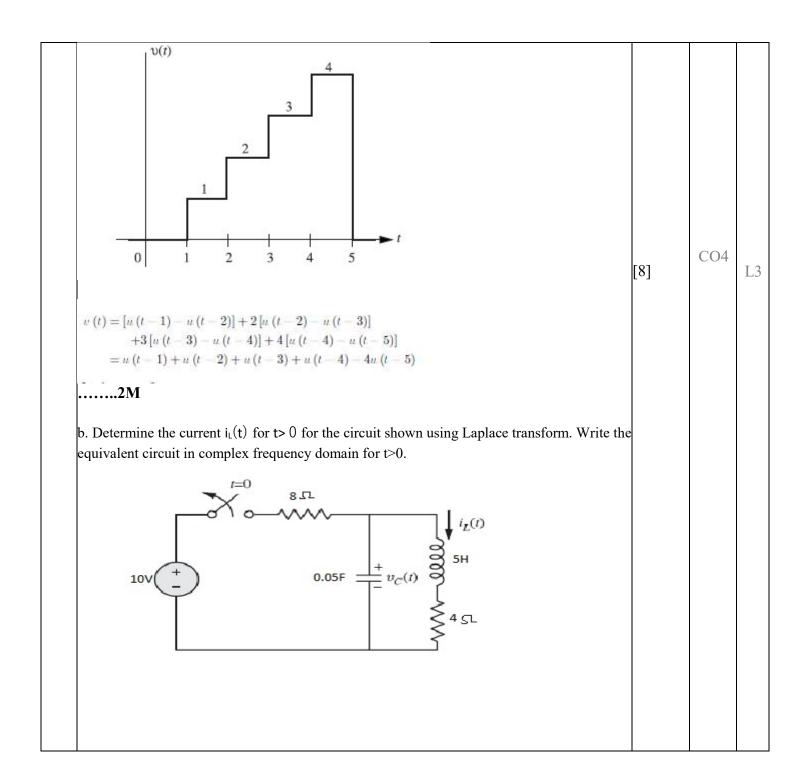
If we let $s \to \infty$, then the integral on the right side of equation (5.10) vanishes due to damping factor, e^{-st} .

Thus.

$$\lim_{s \to \infty} [sX(s) - x(0)] = 0$$
$$x(0) = \lim_{s \to \infty} sX(s)$$

Statement:2M Proof: 3M

The final-value theorem allows us to find the final value $x(\infty)$ directly from its Laplace transform X(s).


If x(t) is a causal signal,

then

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

Proof: The Laplace transform of $\frac{dx(t)}{dt}$ is given by $sX(s) - x(0) = \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt$ Taking the limit $s \to 0$ on both the sides, we get $\lim_{s \to 0} [sX(s) - x(0)] = \lim_{s \to 0} \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt$ $= \int_0^\infty \frac{dx(t)}{dt} \left[\lim_{s \to 0} e^{-st} \right] dt$ $= \int_0^\infty \frac{dx(t)}{dt} dt$ $= x(t) _0^\infty$ we get. $x(\infty) - x(0) = \lim_{s \to 0} [sX(s)] - x(0)$ we get. $x(\infty) - x(0) = \lim_{s \to 0} [sX(s)] - x(0)$ Hence, $x(\infty) = \lim_{s \to 0} [sX(s)]$ This proves the final value theorem. Statement: 2M Proof: 3M	
The Laplace transform of $\frac{dx(t)}{dt}$ is given by $sX(s)-x(0)=\int\limits_0^\infty \frac{dx(t)}{dt}e^{-st}dt$ Taking the limit $s\to 0$ on both the sides, we get $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}\int\limits_0^\infty \frac{dx(t)}{dt}e^{-st}dt$ $=\int\limits_0^\infty \frac{dx(t)}{dt}\left[\lim_{s\to 0}e^{-st}\right]dt$ $=\int\limits_0^\infty \frac{dx(t)}{dt}\left[\lim_{s\to 0}e^{-st}\right]dt$ $=\int\limits_0^\infty \frac{dx(t)}{dt}dt$ $=x(t) _0^\infty$ $=x(\infty)-x(0)$ Since, $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)$ we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement: 2M Proof: 3M	
$sX(s)-x(0)=\int_{0}^{\infty}\frac{dx(t)}{dt}e^{-st}dt$ Taking the limit $s\to 0$ on both the sides, we get $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}\int_{0}^{\infty}\frac{dx(t)}{dt}e^{-st}dt$ $=\int_{0}^{\infty}\frac{dx(t)}{dt}\left[\lim_{s\to 0}e^{-st}\right]dt$ $=\int_{0}^{\infty}\frac{dx(t)}{dt}dt$ $=x(t) _{0}^{\infty}$ $=x(\infty)-x(0)$ Since, $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)$ we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement: 2M Proof: 3M	
Taking the limit $s \to 0$ on both the sides, we get $\lim_{s \to 0} [sX(s) - x(0)] = \lim_{s \to 0} \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt$ $= \int_0^\infty \frac{dx(t)}{dt} \left[\lim_{s \to 0} e^{-st} \right] dt$ $= \int_0^\infty \frac{dx(t)}{dt} dt$ $= x(t) _0^\infty$ $= x(\infty) - x(0)$ Since, $\lim_{s \to 0} [sX(s) - x(0)] = \lim_{s \to 0} [sX(s)] - x(0)$ we get, $x(\infty) - x(0) = \lim_{s \to 0} [sX(s) - x(0)]$ Hence, $x(\infty) = \lim_{s \to 0} [sX(s)]$ This proves the final value theorem. Statement: 2M Proof: 3M	
$\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}\int_0^\infty \frac{dx(t)}{dt}e^{-st}dt$ $=\int_0^\infty \frac{dx(t)}{dt}\left[\lim_{s\to 0}e^{-st}\right]dt$ $=\int_0^\infty \frac{dx(t)}{dt}dt$ $=x(t) _0^\infty$ $=x(t) _0^\infty$ $=x(\infty)-x(0)$ Since, $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)$ we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement: 2M Proof: 3M	
$=\int\limits_0^\infty \frac{dx(t)}{dt} \left[\lim\limits_{s\to 0} e^{-st}\right] dt$ $=\int\limits_0^\infty \frac{dx(t)}{dt} dt$ $=x(t) _0^\infty$ $=x(\infty)-x(0)$ Since, $\lim\limits_{s\to 0} [sX(s)-x(0)] =\lim\limits_{s\to 0} [sX(s)]-x(0)$ we get, $x(\infty)-x(0) =\lim\limits_{s\to 0} [sX(s)-x(0)]$ Hence, $x(\infty) =\lim\limits_{s\to 0} [sX(s)]$ This proves the final value theorem. Statement:2M Proof: 3M	
$=\int\limits_0^\infty \frac{dx(t)}{dt}dt$ $=x(t) _0^\infty$ $=x(\infty)-x(0)$ Since, $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)$ we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement:2M Proof: 3M	
$=x(t) _0^\infty\\ =x(\infty)-x(0)\\ \text{Since,}\qquad \lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)\\ \text{we get,}\qquad x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]\\ \text{Hence,}\qquad x(\infty)=\lim_{s\to 0}[sX(s)]\\ \text{This proves the final value theorem.}$ Statement:2M Proof: 3M	
$=x(\infty)-x(0)$ Since, $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)$ we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement:2M Proof: 3M	
Since, $\lim_{s\to 0}[sX(s)-x(0)]=\lim_{s\to 0}[sX(s)]-x(0)$ we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement:2M Proof: 3M	
we get, $x(\infty)-x(0)=\lim_{s\to 0}[sX(s)-x(0)]$ Hence, $x(\infty)=\lim_{s\to 0}[sX(s)]$ This proves the final value theorem. Statement:2M Proof: 3M	
Hence, $x(\infty) = \lim_{s \to 0} [sX(s)]$ This proves the final value theorem.	
This proves the final value theorem. Statement:2M Proof: 3M	
Statement:2M Proof: 3M	
Proof: 3M	
Obtain the Laplace transform of [10] CO4 1	_3
i) Step function	15
ii) Ramp function	
iii) Impulse function	
Unit step function	
f(t) = u(t)	
$\mathscr{L}\lbrace u(t)\rbrace = F(s) = \int_{0}^{\infty} e^{-st} dt = \frac{1}{s}$	
3M	
Impulse function	
$f(t) = \delta(t)$	
~	
$f(t) = \delta(t)$ $\mathcal{L}\{\delta(t)\} = F(s) = \int_{0}^{\infty} \delta(t)e^{-st}dt = e^{-st}\big _{t=0} = 1$	
0	
3M	I

	Ramp function			
	F(t)=t u(t)			
	$\mathcal{L}{u(t)} = F(s) = \int_{0}^{\infty} e^{-st} dt$			
	$F(s)=1/s^2$			
	4M			
6.	a. Find the Laplace transform of the periodic signal $x(t)$.	[7]	CO4	L3
	x(t)			
	0 3 6 9 12 15 (sec)			
	# 3 1 2 3 1 2 3 M WE 3 1 2 2 3 M T = G 1 (x 1) =	[3]	CO4	L2
	b. List any three properties of Laplace transform and write the relevant equations.			
	to {d, (+)+d,(+)} = F,(s) + F₂(s).			
	10 } x(t-t0) 2(t-t0)} = e+0S X(S)			
	$L \left\{ e^{\Delta t} u(t) \right\} = e^{-t \cdot S} X(S)$ $L \left\{ e^{\Delta t} u(t) \right\} = \int_{S-Q}^{L} S(S)$			
	3*1=3M			
7.	a.Develop the time domain equation v(t) of the staircase waveform shown. (in terms of unit step functions).	[2]	CO4	L3

	$i_{L}(t) = (1 - e^{-2t}) A$			
8.	a. In the given network, K is closed at t= 0 with zero current in the inductor. Find the values of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at t=0 ⁺	[8]	CO3	L3
	$12V + \frac{t=0}{K} = 8\Omega$ $L = 0.2H$			
	12V $(i(f))$ $(i(f$	[2]	CO3	L2

Applying KVL clockwise to the circuit shown in Fig. 4.12(b), we get $Ri + L\frac{di}{dt} = 12$ $8i + 0.2 \frac{di}{dt} = 12$ At $t = 0^+$, the equation (4.1) becomes $8i(0^+) + 0.2 \frac{di(0^+)}{dt} = 12$ $8 \times 0 + 0.2 \frac{di(0^+)}{dt} = 12$ $\frac{di(0^+)}{dt} = \frac{12}{0.2}$ = 60 A/sec Differentiating equation (4.1) with respect to t, we get $8\frac{di}{dt} + 0.2\frac{d^2i}{dt^2} = 0$ At $t = 0^+$, the above equation becomes $8\frac{di(0^+)}{dt} + 0.2\frac{d^2i(0^+)}{dt^2} = 0$ $8 \times 60 + 0.2 \frac{d^2 i(0^+)}{dt^2} = 0$ $\frac{d^2i(0^+)}{dt^2} = -2400 \,\mathrm{A/sec^2}$ Hence3M b. List the initial conditions of inductor and capacitor with relevant equivalent circuit elements at steady state / t=0- and t=0+

.....2M

V(01) = 20/C