CMR INSTITUTE OF USN TECHNOLOGY											
---------------------------------------	--	--	--	--	--	--	--	--	--	--	--

FOR 3A AND 3C ONLY

Internal Test 2 –December 2024

G 1				1 est 2 - Decen	nuer	2024		G 1	DECOM
Sub:			Network Ar	-				Code:	BEC304
Date:	17/12/2024	Duration:	90 mins	Max Marks:	50	Sem:	3 A&C	Branch:	ECE
Note:	Answer any FIVE f	ull questions	s with nea	t diagram whe	reve	r necess	sary.		
									OBE
									Marks CO RB
1 F	Find Y parameters	of the netw	vork show	vn in Figure () 1.				[5+5] CO5 L3
		v_1	1Ω 2Ω		20 + 0	2			
			Figure	Q 1					
			гідиге /.	10					
	in Fig. 7.14(a). To find \mathbf{y}_{11} a	and \mathbf{y}_{21} , the output	terminals of F	rrent source, we get this rent source, we get this rent short of the s	ed and	connect a c			
	v_1	1Ω 3V1 2Ω 2Ω Figure 7.14(α)	I_2 + 2 V_2 $-\overline{0}$ I_1	I_{1} V_{1} V_{1} V_{1} V_{1} Figure 7.14		12 + V ₂ =0	0		
	KCL at node V		$\frac{\mathbf{V}_1}{2} + \frac{\mathbf{V}_2}{2}$	$\frac{V_1 - \mathbf{V}_2}{1} = \mathbf{I}_1$		\mathbf{V}_1			

Since $V_2 = 0$, we get

 \Rightarrow

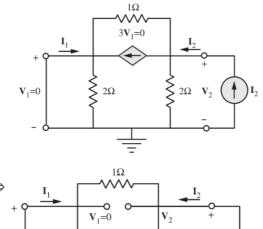
$$\frac{\mathbf{V}_1}{2} + \mathbf{V}_1 = \mathbf{I}_1 + 3\mathbf{V}_1$$
$$\mathbf{I}_1 = \frac{-3}{2}\mathbf{V}_1$$

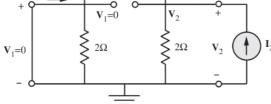
Hence,

$$\mathbf{y}_{11} = \frac{\mathbf{I}_1}{\mathbf{V}_1} \bigg|_{\mathbf{V}_2 = 0} = \frac{-3}{2} \mathbf{S}$$

KCL at node V_2 :

$$\frac{\mathbf{V}_2}{2} + 3\mathbf{V}_1 + \frac{\mathbf{V}_2 - \mathbf{V}_1}{1} = \mathbf{I}_2$$


Since $V_2 = 0$, we get


 \Rightarrow

$$0 + 3\mathbf{V}_1 - \mathbf{V}_1 = \mathbf{I}_2$$
$$\mathbf{I}_2 = 2\mathbf{V}_1$$
$$\mathbf{y}_{21} = \frac{\mathbf{I}_1}{\mathbf{V}_2} = 2\mathbf{S}$$

Hence

To find y_{21} and y_{22} , the input terminals of Fig. 7.14(a) are shorted and connect a current source I_2 to the output terminals. This results in a circuit diagram as shown in Fig. 7.14(c).

KCL at node V_2 :

 \Rightarrow

$$\frac{\mathbf{V}_2}{2} + \frac{\mathbf{V}_2 - 0}{1} = \mathbf{I}_2$$
$$\frac{3}{2}\mathbf{V}_2 = \mathbf{I}_2$$
$$\mathbf{v}_{00} = \frac{\mathbf{I}_2}{2}$$

Hence,

 $\mathbf{y}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} = \frac{3}{2}\mathbf{S}$

KCL at node V_1 :

$$\mathbf{I}_1 = \frac{\mathbf{V}_1}{2} + \frac{\mathbf{V}_1 - \mathbf{V}_2}{1} = 0$$

Since $V_1 = 0$, we get

$$\begin{split} \mathbf{I}_1 &= -\mathbf{V}_2 \\ \mathbf{y}_{12} &= \frac{\mathbf{I}_1}{\mathbf{V}_2} = -1 \mathbf{S} \end{split}$$

2a Define ABCD parameter.

Hence,

[4] CO5 L1

Tridurmission Poissonchives :

$$V_{1} = AV_{2} - BI_{2}$$

$$T_{1} = CV_{2} - DI_{2}$$

$$V_{1}$$

$$V_{1} = \begin{bmatrix} A & B \\ c & c \end{bmatrix} \begin{bmatrix} V_{1} \\ T_{2} \end{bmatrix}$$

$$\begin{bmatrix} V_{1} \\ c & c \end{bmatrix} \begin{bmatrix} A & B \\ c & c \end{bmatrix} \begin{bmatrix} V_{1} \\ T_{2} \end{bmatrix}$$

$$\begin{bmatrix} V_{1} \\ c & c \end{bmatrix} \begin{bmatrix} A & B \\ T_{2} \end{bmatrix} \begin{bmatrix} V_{2} \\ T_{2} \end{bmatrix}$$

$$A = \frac{V_{1}}{V_{2}} \end{bmatrix} \xrightarrow{T} c for chast so that so that is marked inf.$$

$$B = \frac{V_{1}}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{2}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{2} = 0 \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{1} = V_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} V_{1} = V_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} T_{1} \\ T_{1} \end{bmatrix}$$

$$Trice = \frac{1}{V_{1}} \begin{bmatrix} T_{1}$$

from
$$c_{4}n \bigoplus V_{2} = \frac{1}{h_{32}} T_{2} - \frac{h_{32}}{h_{32}} T_{1} + \frac{1}{h_{22}} T_{2} - \frac{1}{h_{32}} T_{1} + \frac{1}{h_{22}} T_{2} - \frac{1}{h_{32}} T_{3} - \frac$$

$$i \begin{cases} s \to 0 \\ lim \\ s \to 0 \end{cases} \left[s \times (s) - x (0) \right] = \lim_{s \to 0} \int_{0}^{s} dx e^{-st} dt \\ = \int_{0}^{\infty} dx (t) \int_{s \to 0}^{tim e^{-st}} dt \\ = \int_{0}^{\infty} dx (t) \int_{s \to 0}^{tim e^{-st}} dt \\ = \int_{0}^{\infty} dx (t) \int_{s \to 0}^{tim e^{-st}} dt \\ = x (s) - x (0) .$$

$$\lim_{s \to 0} \left[s \times (s) - x (0) \right] = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

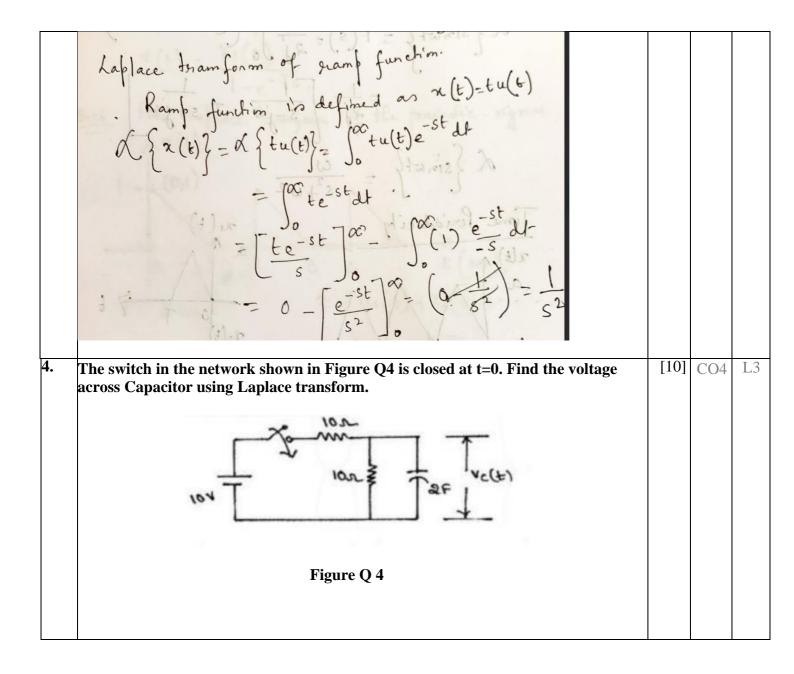
$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

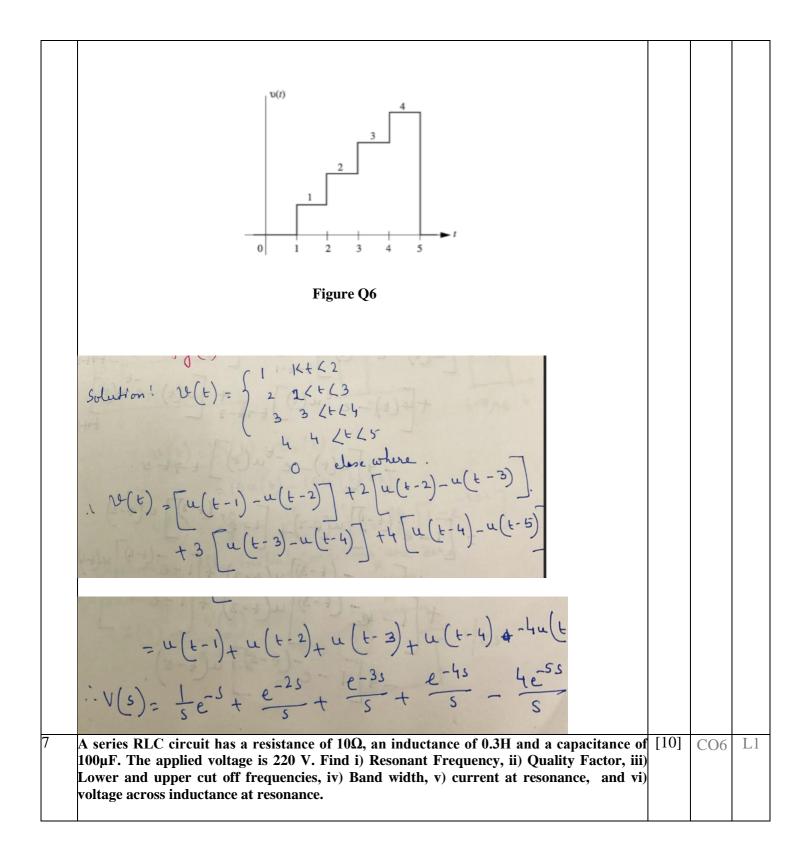
$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$


$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$


$$x (\infty) - x (0) = \lim_{s \to 0} s \times (s) - x (0).$$

10 r to 2102 ZF 10 0 as circuit not activated at t=0-, so ve (0-) =0 Hence vc(ot) = 0 Cihcuit in Frequency domais $\frac{10}{5}$ Applying Kel at mode ve (s) $V_{c}(s) \left[\frac{1}{10} + \frac{1}{10} + \frac{2}{10} \right] = \frac{10}{5 \times 10}$ $\frac{1}{10} V_{c}(s) = \frac{2+20s}{10} = \frac{1}{s}.$ $\frac{1}{10} V_{c}(s) = \frac{5}{s(10s+1)}.$ = $\frac{A}{s} + \frac{B}{10s+1}$ $= \frac{10 \text{ As } + \text{Bs } + \text{A}}{\text{S} (10 \text{ s} + 1)}$

$$\int Comparising 10 \ h^{2} + h^{2} = 0$$

$$A = 5$$

 $f_0 = \frac{1}{2\pi\sqrt{Lc}} = \frac{1}{2\pi\sqrt{0.3 \times 100 \times 10^{-6}}}$ $f_0 = 29.05 \text{ H2}$ $B \cdot W = \frac{R}{2\pi L} = \frac{10}{2\pi \times 0.3} = 5.30 \text{ H2}.$ Q1 = R VE = 5-47 $G.W = f_2 - f_1 = 5.30$ fo = Stifs. fo = fifs = 843.90. 5. fr (530+fr) = 843-90 $V_{2} \int_{1}^{2} + 530f_{1} - 813 \cdot 1 = 0$ 1 = 1.58 HZ 12 = 1.58 + 5.30 = 6.88 Hz Consult at susmance = V = 220 = 22A Vollage across indudance = jXIV gov = j 5.47 × 220 = j 1203V Derive the expressions of half power frequencies in terms of resonant frequency, [10] L2 CO6 also derive the expression for bandwidth in terms circuit parameters for a series R, L , C circuit. Current in the sources RLC circuit is given by, $I = \frac{V}{\sqrt{R^2 + (X_L - X_C)^2}} - (1)$ 1 -100 JO = 1 J1 J2 Also at pussmance cut off frequency. $I = \frac{I_0}{\sqrt{2}}$, where I_0 is maximum current

 $I = \frac{V}{R\sqrt{2}} - (2)$ Equating () and (2) $\frac{V}{\sqrt{R^2 + (X_L - X_C)^2}} = \frac{V}{R\sqrt{2}}$ $=72R^2 = R^2 + (X_L - X_L)^2$ $=7 R^2 = (\omega L - \frac{1}{\omega c})^2$ on which the the main and the second At upper out of frequency, 12 $R = \omega_2 L - \frac{1}{\omega_2 c} - \frac{4}{4}$ At lower cut off frequency $-R = \omega_1 L - \omega_1 C - \varepsilon$ Adding (3) and (5) $\omega_2 L - \frac{1}{\omega_1 C} + \omega_1 L - \frac{1}{\omega_1 C} = R - R$ $\neg L(\omega_2 + \omega_1) - \frac{1}{c}(\frac{1}{\omega_1} + \frac{1}{\omega_1}) = 0$ $= \frac{1}{2} L(\omega_2 + \omega_1) = \frac{1}{C} \left(\frac{\omega_1 + \omega_2}{\omega_1 \omega_2} \right)$ L= L Y WIW2

$$\Rightarrow (\omega_{1} \omega_{2} = \frac{1}{Lc})$$

$$\Rightarrow (\omega_{1} \omega_{2} = \omega_{2}^{2}) [\omega_{0} \omega_{0}^{2} = \frac{1}{Lc}]$$

$$\Rightarrow (\omega_{1} \omega_{2} = \omega_{2}^{2}) [\omega_{0} \omega_{0}^{2} = \frac{1}{Lc}]$$

$$\Rightarrow (\omega_{1} \omega_{2} = \frac{1}{2}) \Rightarrow (\omega_{2} - \omega_{1} + \frac{1}{2}) = \frac{1}{2}$$
Subhading eqn (4) and (5)

$$(\omega_{2} L - \frac{1}{\omega_{2}C} - \omega_{1}L + \frac{1}{\omega_{1}C} = R - (-R)$$

$$\Rightarrow L (\omega_{2} - \omega_{1}) - \frac{1}{C} (\frac{\omega_{1} - \omega_{2}}{\omega_{1} \omega_{2}}) = 2R$$

$$\Rightarrow L (\omega_{2} - \omega_{1}) - \frac{1}{C} (\frac{\omega_{1} - \omega_{2}}{\omega_{1} \omega_{2}}) = 2R$$

$$\Rightarrow L (\omega_{2} - \omega_{1}) + \frac{1}{C} (\frac{\omega_{2} - \omega_{1}}{\omega_{1} \omega_{2}}) = 2R$$

$$\Rightarrow (\omega_{2} - \omega_{1}) [L + \frac{1}{C} (\frac{\omega_{2} - \omega_{1}}{\omega_{1} \omega_{2}}] = 2R$$

$$\Rightarrow (\omega_{2} - \omega_{1}) [\frac{1}{L} + \frac{1}{C} (\frac{\omega_{2} - \omega_{1}}{\omega_{2} - \omega_{2}}] = 2R$$

$$\Rightarrow (\omega_{2} - \omega_{1}) [\frac{1}{L} + \frac{1}{C} (\frac{\omega_{2} - \omega_{1}}{\omega_{2} - \omega_{2}}] = 2R$$

$$\Rightarrow (\omega_{2} - \omega_{1}) [\frac{1}{L} + \frac{1}{C} (\frac{\omega_{2} - \omega_{1}}{\omega_{2} - \omega_{2}}] = 2R$$

$$\Rightarrow (\omega_{2} - \omega_{1}) [\frac{1}{L} + \frac{1}{C} (\frac{\omega_{2} - \omega_{1}}{\omega_{2} - \omega_{2}}] = 2R$$

CI

HOD(ECE)