

## <u>Scheme Of Evaluation</u> Internal Assessment Test II – Dec 2024

| Sub:  | DIGITAL SIGNAL PROCESSING |           |        |               |    | Code: | BEC502 |         |     |
|-------|---------------------------|-----------|--------|---------------|----|-------|--------|---------|-----|
| Date: | 13/12/2024                | Duration: | 90mins | Max<br>Marks: | 50 | Sem:  | V      | Branch: | ECE |

| Note: A | Answer | Any | Five | Questions |
|---------|--------|-----|------|-----------|
|---------|--------|-----|------|-----------|

| Ques<br># | tion Description                                                                                                                                                                                                                                                         | Marks<br>Distribution |        | Max<br>Marks |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|--------------|
|           | Compute the 6-point DFT of $x[n] = [1,2,3,4]$ . Plot magnitude spectrum and phase spectrum.                                                                                                                                                                              |                       |        |              |
| 1         | DFT Computation                                                                                                                                                                                                                                                          | 6 M                   | 10 M   | 10 M         |
|           | Magnitude Spectrum                                                                                                                                                                                                                                                       | 2 M                   | 10 101 | 10 101       |
|           | • Phase Spectrum                                                                                                                                                                                                                                                         | 2 M                   |        |              |
| 2         | <ul> <li>Compute the 4-point circular convolution of x[n] = [1,2,3] and h[n] = [3,2,4] using DFT-IDFT approach [Stockham's method]. Verify the result using matrix method.</li> <li>Circular Convolution</li> <li>Verify using matrix method</li> </ul>                  | 6 M<br>4 M            |        | 10 M         |
| 3         | State and prove the following properties of DFT.i)Circular Time Shiftii)Circular Frequency Shiftiii)Parseval's Theorem                                                                                                                                                   | 4 M<br>3 M<br>3 M     | 10 M   | 10 M         |
| 4         | An LTI system has the impulse response $h[n] = [1,2,3]$ . Find the<br>output of the system for the input $x[n] = [1,2,3,2,1,4,3,2,1,3,2]$<br>using overlap-add method. Use 6-point circular convolution.<br>Convolution block outputs<br>Final Overlap Add method output | 6 M<br>4 M            | 10 M   | 10 M         |
| 5         | Compute the 8-point DFT of $x[n] = [1,2,3,4,4,3,2,1]$ using DIT-<br>FFT.<br>Stage 1<br>Stage 2<br>Stage 3                                                                                                                                                                | 2 M<br>4 M<br>4 M     | 10 M   | 10 M         |
| 6         | An LTI system has the transfer function<br>$H(z) = \frac{2z^3 - 3z^2 + z - 1}{z^4 - 2z^3 + 3z^2 - 4z + 2}$                                                                                                                                                               |                       | 10 M   | 10 M         |

Dept. of ECE, CMRIT

|   | -  |                                                                                                                                        | r     |      |      |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|
|   |    | Implement the system using Direct Form-I (DF-I) and Direct                                                                             | 5 M   |      |      |
|   |    | Form-II (DF-II).                                                                                                                       | 5 M   |      |      |
|   |    | Direct Form I                                                                                                                          | J IVI |      |      |
|   |    | Direct Form II                                                                                                                         |       |      |      |
|   | a) | Design an FIR filter to meet the following desired frequency response.                                                                 |       |      |      |
|   |    | $H_{d}(\omega) = \begin{cases} e^{-j3\omega} & for \  \omega  \le \frac{\pi}{4} \\ 0 & otherwise \end{cases}$                          |       |      |      |
| 7 |    | Use rectangular window in your design.                                                                                                 |       | 10 M | 10 M |
|   |    | $h(n) = h_d(n) w(n)$<br>$h_d(n)$ evaluation                                                                                            | 6 M   |      |      |
|   |    | h(n) computation                                                                                                                       | 4 M   |      |      |
|   |    | Design an analog Butterworth filter that has a passband attenuation of 2 dB at 10 rad/s and stopband attenuation of 30 dB at 50 rad/s. |       |      |      |
| 8 |    | Order N computation                                                                                                                    | 3 M   |      |      |
|   |    | Poles computation $s_k(n)$                                                                                                             | 4 M   |      |      |
|   |    | Analog Filter Transfer Function $H_a(s)$                                                                                               | 3 M   |      |      |