
Solution with scheme-Model Answer

Prof.Lynsha Helena Pratheeba HP/Prof.Rajeshwari R/

Prof.Kavyashree/Prof.Reshma

 Internal Assessment Test 1 – November 2024

Sub Principles of Programming Using C Sub code BPOPS103 Branch
ISE, AIML,

CSE(AIML),

AIDS

Date 22.11.2024 Duration 90 mins Max Marks 50 Sem /Sec
I Sem P-Cycle

(A- H)
OBE

Answer any FIVE FULL

Questions

MAR KS C

O

RBT

 1. a)

 b)
With a neat block diagram of computer explain its components.

Compare the input and output devices with examples.

[6]

[4]

CO1

CO1

L1

L2

 2. a)
Illustrate the basic structure of a C Program. Explain each section briefly with
suitable examples including flowchart and algorithm.

[10]

CO1 L3

 3. a)

 b)

Write a C program with flowchart:

a) To find Mechanical energy of a particle using E=mgh+1/2mv2

b) Convert kilometre into metre, millimetre and centimetre (note: print only 4
values after decimal point)

[5]

[5]

CO1

CO1

L3

L3

 4. a)

 b)

Define Operator. Explain the unary and ternary operators with examples.

Write the correct output for the below code snippet: (each carries marks)

1) int x=10, y=20, z=5, i; i=x<y<z; printf (“%d”, i);

2) int a = 15, b = 10, c = 5, d = 2; a += b-- * ++c? d++: --b; a *= c-- + b++ - d;

3) int x=8,y =3;float result; result =(float)(x + y)/y; printf("Result:%.2f\n",

result);

4) int a=500, b=100, c; if (! a>=400) b=300; c=200; printf (“b=%d c=%d”, b,c);
5) Write the output statement for below codes: 31.240000 6.360000 5.460000
 float a=31.24; double b=6.36; long double c=5.46;

[5]

[5]

CO2

CO2

L2

L3

5. a)

 b)

Compute the roots of a quadratic equation by accepting the coefficients. Print

appropriate messages.

Write a C Program to display the following by reading the number of rows as

input:

12345

1234

123

12

1

nth row

[5]

 [5]

CO2

CO2

L3

L3

6. a)

 b)
Differentiate while () and do-while ().
State the drawbacks of ladder if-else. Explain how do you resolve with suitable
example.

[3]

[7]

CO2

CO2

L2

L2

7. a) What is user defined function? Give the advantages of using functions. Explain
any two categories of function prototype with examples.

[10] CO3 L2

8. a)

b)

Explain how actual parameters are different from formal parameters.

Illustrate the types of parameters passing methods.

[4]

 [6]

CO3
CO3

L2

L2

1. a)

With a neat block diagram of computer explain its components.

 Diagram with Explanation [2M+4M]

Input unit: The input unit that links the external environment to input data & tasks with the

computer system to execute. Data are entered in different forms through different input devices.

Keyboard is used for characters input. Mouse is used in GUI (Graphic User Interface). Internally

data is processed in machine readable form.

Output Unit: Output/result is displayed, printed & transmitted to outside world. There are many

output devices: monitor, printer/plotters, display boards, speaker etc.

Storage unit: The data and instructions that are entered into the computer system through input

units have to be stored inside the computer before the actual processing starts. Similarly, the results

produced by the computer after processing must also be kept somewhere inside the computer

system before being passed on to the output units. The storage unit is Primary Memory (RAM) &

Secondary (permanent storage devices: disks, tapes)

CPU (Central processing Unit): It is the main unit which controls all events within computer. The

CPU has 3 internal units below:

CU (Control unit): By selecting, interpreting, and seeing to the execution of the program

instructions, the control unit is able to maintain order and directs the operation of the entire system.

the control unit acts as a central nervous system for the other components of the computer. It

manages and coordinates the entire computer system. It obtains instructions from the program

stored in main memory, interprets the instructions, and issues signals that cause other units of the

system to execute them.

ALU (Arithmetic & Logic Unit): The arithmetic and logic unit (ALU) is the part where actual

computations take place. It consists of circuits that perform arithmetic operations (e.g. addition,

subtraction, multiplication, division over data received from memory and capable to compare

numbers (less than, equal to, or greater than).

MU (Memory Unit/Registers): Registers are built-in memory with CPU having less storage space

in bits. Registers are a group of cells used for memory addressing, data manipulation and

processing. Instruction Registers, Address registers, Program Counters, Accumulators are example

of registers. ALU takes data from here inside the CPU.

RAM (Random Access Memory): RAM is the memory - primary storage where our data &

programs are stored temporarily. It is volatile in nature. After switching off the system everything

will be vanished from RAM.

ROM (Read Only Memory): ROM is storage medium/”firmware” where some code of

manufacturer is permanently hardwired in chip which always executes automatically when we start

the system. The process is known as POST (Power on Self-test). Booting preceeds POST.

 [6]

 b)

 2. a)

Compare the input and output devices with examples.

Input Devices Output devices

Data is accepted by the user of the device It shows the data after processing to the user

It accepts the user’s data and transmits it to the

processor for saving in the secondary memory

or processing.

It receives the data from the processor and

returns it to the user

More complex designing Less complex designing

These devices are used to accept the data
These devices are used to display or show

the data

Example: Keyboard, mouse, etc. Example: Monitor, Printer, etc.

Illustrate the basic structure of a C Program. Explain each section briefly with suitable

examples including flowchart and algorithm.

 Explanation [4] +Program [2] +Alg[2] +Flow[2]

Comment line:
It indicates the purpose of the program.

It is represented as:

Single line - //content

Multiple line - / * * /

Comment line is used for increasing the readability of the program. It is useful in explaining the

program and generally used for documentation. It is enclosed within the decimeters.

Comment line can be single or multiple line but should not be nested. It can be anywhere in the

program except inside string constant & character constant.

Preprocessor Directive:

Preprocessor directives in C are lines included in the code that begin with the # symbol and are

processed before the actual compilation of code begins. These directives instruct the preprocessor to

perform specific actions, such as including header files.

Syntax: #include<headerfile.h> #include<stdio.h> tells the compiler to include information about

the standard input/output library.

 [4]

 [10]

Definition section:

Syntax: #define symbolicconstantvariable symbolicconstat

It is also used in symbolic constant such as#define PI 3.14(value).

Global Declaration: This is the section where variables are declared globally so that it can be

access by all the functions used in the program. And it is generally declared outside the function.

Syntax: Datatype variablename;

Main (): It is the user defined function and every function has one main () function from where

actually program is started and it is enclosing within the pair of curly braces. The main () function

can be anywhere in the program, but in general practice it is placed in the first position.

Syntax: int main ()

Sub program section: There may be other user defined functions to perform specific task when

called.

Sample Example:

//Simple Calculator //Documentation section

include<stdio.h> // header section

 int main() //main function

 {

 int num1, num2;

 int result; //local variable declaration

 char op;

 printf("Enter the operator \n");

 scanf("%c",&op);

 printf("Enter two integers :"); //Executable statements

 scanf("%d%d", &num1,&num2);

 if (op == '+')

 {

 result=num1+num2;

 }

 else if (op == '-')

 {

 result=num1-num2;

 }

 else if (op == '*')

 {

 result=num1*num2;

 }

 else if (op == '/')

 {

 if (num2 == 0)

 {

 printf("Divide by zero error \n");

 return (1);

 }

else

{

 result=num1/num2;

 }

}

 else if (op == '%')

 {

 if (num2 == 0)

 {

 printf("Divide by zero error \n");

 return (2);

 }

else

{

result=num1%num2;

 }

}

 else

 {

 printf("Invalid operator...\n");

 return (3);

 }

 printf("%d %c %d = %d\n", num1, op, num2, result);

 return 0;

 }

Sample Output:

Enter the operator +

Enter two integers: 2 3

2+3 =5

Flowchart:

Algorithm:

Input: Two integers(operands) and operator

Output: Result of the operation

Step 1: Start

Step 2: Read two operands and an arithmetic operator

Step 3: Check if operator equals ‘+’, if yes, then goto step 4 else goto step 5

Step 4: Compute addition operation - res = num1 + num2 and goto step 18

Step 5: Check if operator equals ‘-’, if yes, then goto step 6 else goto step 7

Step 6: Compute subtraction operation - res = num1 – num2 and goto step 18

Step 7: Check if operator equals ‘*’, if yes, then goto step 8 else goto step 9

3.a)

Step 8: Compute multiplication operation - res = num1 * num2 and goto step 18

Step 9: Check if operator equals ‘/’, if yes, goto step 10 else goto step 13

 Step 10: Check if num2 equals Zero, if yes, then goto step 11 else goto step 12

 Step 11: Display – “Divide by zero error” and goto step 19

Step 12: Compute division operation - res = num1 / num2 and goto step 18

Step 13: Check if the operator equals ‘%’, if yes, then goto step 14 else goto step 17

Step 14: Check if num2 equals zero, if yes, then goto step 15 else goto step 16

Step 15: Display - “Divide by zero error.” and goto step 19.

Step 16: Compute modulus operation – res = num1 % num2 and goto step 18

Step 17: Display “Invalid operator” and goto step 19.

Step 18: Display the result

Step 19: Stop

Write a C program with flowchart: Program [3] +Flow [2]

To find Mechanical energy of a particle using E=mgh+1/2mv2.

Code:

#include <stdio.h>

int main(void)

{

float m,h,v,p,k,e;

printf("Enter Mass of the body\n");

scanf("%f",&m);

printf("Enter displacement of the body\n");

scanf("%f",&h);

printf("Enter velocity of the body\n");

scanf("%f",&v);

p=m*9.8*h; //To calculate Potential energy

k=0.5*m*(v*v); //To calculate Kinetic energy

e=p+k;

printf("Potential energy of the body = %f\n",p);

printf("Kinetic energy of the body = %f\n",k);

printf("Mechanical energy of a body = %f\n" , e);

}

Sample Output:

Enter Mass of the body 1000.00

Enter displacement of the body 10.00

Enter velocity of the body 120.00

Potential energy of the body = 98000.00

Kinetic energy of the body = 7200000.00

Mechanical energy of a body = 7298000.00

Flowchart:

 [5]

b)

4. a)

Convert kilometre into metre, millimetre and centimetre (note: print only 4 values after decimal

point)

Code:

#include <stdio.h>

int main () {

float meter, centimeter, millimeter, kilometer;

printf("Enter Length in Kilometer(km)\n");

scanf("%f", &kilometer);

meter = kilometer * 1000;

centimeter = kilometer * 100000;

millimeter = kilometer * 1000000;

printf("%.4f Kilometer = %.4f Meter\n", kilometer, meter);

printf("%.4f Kilometer = %.4f Centimeter\n",kilometer,centimeter);

printf("%.4f Kilometer = %.4f Millimeter\n",kilometer,millimeter);

return 0;

}

Sample Output:

Enter Length in Kilometer(km) 4.0

4.0000 Kilometer = 4000.0000 Meter

4.0000 Kilometer = 400000.0000 Centimeter

4.0000 Kilometer = 4000000.0000 Millimeter

Flowchart:

Define Operator. Explain the unary and ternary operators with examples. [1] + [2] + [2]
In programming, an operator is a symbol that tells the compiler or interpreter to perform specific
mathematical, relational, or logical operations and produce a final result. Operators act on operands, which
can be values or variables
Unary Operator

A unary operator is an operator that operates on a single operand. Here are a few common unary operators in
C:
Increment Operator (++), Decrement Operator (--), Unary Minus Operator (-), Unary plus Operator (+),

Logical NOT Operator (!)
Eg: a++, +a
Ternary Operator

The ternary operator is a shorthand for the if-else statement and is the only operator in C that takes three
operands. It is also known as the conditional operator and is represented by the ?:. It evaluates a condition and

[5]

 [5]

Read the input km

Print the output

meter, cm and mm

meter = km* 1000;

cm = km* 100000;

mm = km * 1000000;

Start

Stop

 b)

chooses one of two expressions to return based on the result of the condition.
Syntax:

condition? expression_if_true : expression_if_false;

Eg:
int x = 10; int y = (x > 5) ? 20 : 30
y will be 20 because x > 5 is true.

Write the correct output for the below code snippet: [each carries 1M]

1. int x=10, y=20, z=5, i; i=x<y<z; printf (“%d”, i);

Explanation:

First Comparison: x < y

 With x = 10 and y = 20, x < y is true, so it returns 1

Second Comparison: 1 < z

 Now, z = 5, so 1 < 5 is true, which also returns 1.

So, the statement i = x < y < z will evaluate i as 1.

Output:1

2. int a = 15, b = 10, c = 5, d = 2; a += b-- * ++c? d++: --b; a *= c-- + b++ - d;

Explanation:

a += b-- * ++c ? d++ : --b:

 ++c changes c from 5 to 6

 b-- will use the current value of b (which is 10) and then decrement b to 9

 b-- * ++c evaluates to 10 * 6 = 60

 60 ? d++ : --b (Since 60 is non-zero, it is true, so the expression evaluates to d++.

 d++ returns 2 (the current value of d before incrementing), and then d becomes 3.

 a += 2 changes a from 15 to 17.

Output:

a = 17, b = 9, c = 6, d = 3

a *= c-- + b++ - d:

Explanation:

 c-- will use the current value of c (which is 6) and then decrement c to 5.

 b++ will use the current value of b (which is 9) and then increment b to 10

 c-- + b++ - d evaluates to 6 + 9 - 3 = 12

 a *= 12 changes a from 17 to 17 * 12 = 204

Output:

a = 204, b = 10, c = 5, d = 3

3. int x=8,y =3;float result; result =(float)(x + y)/y; printf("Result:%.2f\n", result);

 x + y is evaluated: 8 + 3 = 11

 (float)(x + y) casts the result 11 to a floating-point number 11.0

 11.0 / y then performs the division: 11.0 / 3 = 3.66667

Output:

Result: 3.67

4. int a=500, b=100, c; if (! a>=400) b=300; c=200; printf (“b=%d c=%d”, b,c);

Explanation:

if (!(a >= 400)) evaluates the expression a >= 400, which is true

! operator negates this, making the condition false

Since the condition is false, the statement b = 300; does not execute

c is then assigned the value 200

Output:

b=100 c=200

5. Write the output statement for below codes: 31.240000 6.360000 5.460000

 float a=31.24; double b=6.36; long double c=5.46;

Output:

printf("%f %lf %Lf", a, b, c);

 [5]

5. a)

 b)

Compute the roots of a quadratic equation by accepting the coefficients. Print appropriate

messages. [4] + [1]

Code:

#include<stdio.h>

#include<math.h>

int main()

{

float a,b,c,desc,r1,r2,realpart,imgpart;

printf("Enter the coefficients of a, b and c :");

scanf("%f%f%f",&a,&b,&c);

if(a == 0)

{

 printf("Coefficient of a cannot be zero....\n");

 printf("Please try again....\n");

 return 1;

 }

 desc=(b*b)-(4.0*a*c);

 if(desc==0)

 {

 printf("The roots are real and equal\n");

 r1=r2=(-b)/(2.0*a);

 printf("The two roots are r1=r2=%f\n",r1);

 }

 else if(desc>0)

 {

 printf("The roots are real and distinct\n");

 r1=(-b+sqrt(desc))/(2.0*a);

 r2=(-b-sqrt(desc))/(2.0*a);

 printf("The roots are r1=%f and r2=%f\n",r1,r2);

 }

 else

 {

 printf("The roots are imaginary\n");

 realpart=(-b)/(2.0*a);

 imgpart=sqrt(-desc)/(2.0*a);

 printf("The roots are r1=%f + i %f\n",realpart,imgpart);

 printf("r2=%f - i %f\n",realpart,imgpart);

 }
return 0;
 }

Sample Output:

Enter the coefficients of a, b and c :1 2 1

The roots are real and equal

The two roots are r1=r2=-1.000000

Write a C Program to display the following by reading the number of rows as input:

12345

1234

123

12

1

nth row Code [4] + Output [1]

 [5]

 [5]

6. a)

 b)

Code:

#include <stdio.h>

int main()

{

int n;

printf("Enter the number of rows: ");

scanf("%d", &n);

for (int i = n; i >= 1; i--)

{

for (int j = 1; j <= i; j++)

{ printf("%d", j);

}

printf("\n");

} return 0;

}

Output:

Enter the number of rows: 5

12345

1234

123

12

1

Differentiate while () and do-while (). [3]

Sl.no while Loop do-while Loop

1 while (condition) { } do { } while (condition);

2

Condition is checked before the loop block is

executed.

Loop block is executed at least

once before checking the

condition.

3

Suitable when the loop block should be executed

only if the condition is initially true.

Useful when the loop block

must be executed at least once,

regardless of the initial

condition.

State the drawbacks of ladder if-else. Explain how do you resolve with suitable example.

Ladder if-else statement is multi-way decision statement [2] + [2] + [3]

Syntax of ladder if-else statement:

if(condition1)

statement(s);

else if(condition2)

statement(s);

else if(condition3)

statement(s);

………..

else if(conditionn)

statement(s);

else

statement(S);

if any of the condition1, condition2 & condition3 is evaluated true then corresponding statements are

executed and the control comes out entire of the ladder if-else statement. If all conditions are false

then last statement will be executed.

 [3]

 [7]

Drawback of ladder if-else statement:

a. Multiple if-else conditions are little tough to understand & check to modify for correct output.

b. As depth of ladder increases, readability of program decreases.

c. Each condition and decision may evolve expressions

Instead of else-if ladder, we can go for switch statement.

Syntax of switch statement:

switch (expression)

{ case condition1

statement1;

statement2;

......

break;

case condition2

statement1;

statement2;

.......

break;

.....

default:

statement1;

statement2;

.......

}

Sample Example:

Problem definition:

Bonus of employee in a company is based on grade as following:

Grade ‘a’ employee gets bonus equal to their salary

Grade ‘b’ and ‘c’ employees get bonus salary + 5000

Grade ‘d’ and ‘D’ employees get bonus salary + 10000

Other than these they get bonus salary + 15000.

Source Code:

#include <stdio.h>

int main()

{

int salary,bonus;

char grade;

printf(“Enter grade : “);

scanf(“%c”, &grade);

printf(“Enter salary : “);

scanf(“%d”, &salary);

switch (grade)

{

case ‘a’:

case ‘A’: bonus=salary;

break;

case ‘b’:

case ‘B’:

case ‘c’:

case ‘C’: bonus=salary+5000;

break;

case ‘d’:

case ‘D’: bonus=salary+10000;

break;

default :

bonus=salary+15000; /*lower grade-more bonus*/ }

printf(“Bonus = %d\n”, bonus);

return (0);

}

7.

Output:

Enter grade: A

Enter salary: 50000

Bonus = 50000

What is user defined function? Give the advantages of using functions. Explain any two

categories of function prototype with examples. [2] + [2] + [3] + [3]

User-Defined Function in C

A user-defined function in C is a function created by the programmer to perform specific tasks.

Unlike built-in library functions, user-defined functions are designed to address particular needs

within a program. They help in breaking down complex programs into smaller, manageable, and

reusable code blocks.

Advantages of Using Functions

1. Modularity: Functions break down a large program into smaller, manageable sections. This

modular approach makes the program easier to read, understand, and maintain.

2. Reusability: Once a function is defined, it can be reused in multiple places within the

program without rewriting the same code. This saves time and reduces redundancy.

3. Abstraction: Functions allow programmers to hide the implementation details and expose

only the necessary interfaces. This abstraction helps in focusing on high-level design and

functionality.

4. Debugging: Functions isolate different parts of the program, making it easier to test and

debug each part independently.

Categories of Function Prototypes

Function prototypes declare the function's name, return type, and parameters without defining the

function's body. Two common categories are:

1. Function with No Arguments and No Return Value
 This type of function does not take any parameters and does not return a value. It's typically

used for performing tasks that do not require input and do not produce a result.

Source code:

#include <stdio.h>

void greet();

int main()

{

greet();

}

void greet()

{

printf("Hello, world!\n");

}

Output:

Hello, world!

2. Function with Arguments and No Return Value

This type of function takes parameters but does not return a value. It's useful for performing

operations that need input values but do not need to return a result.

Source code:

#include <stdio.h>

void displaySum (int a, int b);

int main ()

{

int num1 = 10, num2 = 20;

displaySum(num1, num2);

return 0;

}

void displaySum(int a, int b)

{

int sum = a + b;

printf("Sum: %d\n", sum);

}

Sample Output: Sum:30

 [10]

8 a)

 b)

Explain how actual parameters are different from formal parameters. [4points]

 Actual Parameters Formal Parameters

1 Also called actual arguments list Also known as dummy parameters

2 These are variables used in

function call

These are variables defined in function header

3 They are actual values passed to a

function on which the function

will perform operations

They are the variables in the function definition that

would receive the values when the function is

invoked

4 Occurs when we invoke a

function

Occurs when we declare and define a function

Illustrate the types of parameters passing methods. [3]+[3]

Call By Value: In this parameter passing method, values of actual parameters are copied to

function’s formal parameters and the two types of parameters are stored in different memory

locations. So, any changes made inside functions are not reflected in actual parameters of the caller.

Example:

#include<stdio.h>
void swapx(int x, int y);

int main()

{

int a = 10, b = 20;

swapx(a, b);

printf("a=%d b=%d\n", a, b);

return0;

}

void swapx(intx,inty)
{ int t;

t = x;

x = y;

y = t;

printf("x=%d y=%d\n", x, y);

}

Sample Output: x=20 y=10
a=10 b=20

Program with Output [3M]

Call by Reference: Both the actual and formal parameters refer to the same locations, so any

changes made inside the function are actually reflected in actual parameters of the caller.

Example:

#include <stdio.h>

voidswapx(int*,int*);

int main()

{
int a = 10, b = 20;

swapx(&a,&b);

printf("a=%d b=%d\n", a, b);

return0;

}

void swapx(int*x,int*y)

{ intt;

t =*x;

*x =*y;

*y =t;

printf("x=%d y=%d\n", *x, *y);

}

Sample output: x=20 y=10

 a=10 b=20

 [4]

 [6]

