			Interna	l Assessn	nent Test – Ja	nuary	- 2025					
Sub:	: Mathematics-1 forECE Stream solution Code:				BMATE101							
	Date:	16-1-2025	Duration :	90 mins	Max Marks:	50	Sem :	I	section	M to P		
	Question 1 is compulsory and Answer any 6 from the remaining questions.											
									Marks	OBE		
										Mai Ko	CO	RBT
1	Fin	d the extreme valu	ies of the fu	nction f	$(x,y) = x^3 +$	$y^3 - 3$	3x - 1	2y -	+ 20	[08]	CO2	L3
2	Eve	hluate(i) k = x	$\lim_{x \to \frac{\pi}{2}} \frac{lc}{c}$	$\frac{\partial g(\sin x)}{\left(\frac{\pi}{2}-x\right)^2}$	-(ii)k =	$\lim_{x \to 0}$	<u>x²</u> +	-2co x sir	$\frac{3x-2}{n^3x}$	[07]	CO2	L3
3	If :	x + y + z = u,	y + z =	v and z	= uvw find	l the v	value o	$f \frac{\partial}{\partial (}$	(x,y,z) (u,v,w)	[07]	CO2	L3

4	Solve $(x^2 + y^2 + x)dx + xy dy = 0$	[07]	CO3	L3
5	Solve by reducing to clairaut's form $(px - y)(py + x) = 2p$ using $X = x^2 Y = y^2$	[07]	CO3	L3
6	Find the volume of tetrahedron bounded by the planes $x = 0, y = 0, z = 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$	[07]	CO4	L3
7	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration	[07]	CO4	L3
8	Show that $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} * \int_{0}^{\frac{\pi}{2}} d\theta \sqrt{\sin\theta} = \pi$	[07]	CO4	L3

1)

Find the extreme values of the function

 $f(x, y) = x^{3} + y^{3} - 3x - 12y + 20$ $f_{x} = 3x^{2} - 3, f_{y} = 3y^{2} - 12$ We shall find points (x, y) such that $f_{x} = 0$ and $f_{y} = 0$. $3x^{2} - 3 = 0$ and $3y^{2} - 12 = 0$ or $x^{2} - 1 = 0$ and $y^{2} - 4 = 0$ $x = \pm 1, y = \pm 2$

(1,2)(1,-2)(-1,2)(-1,-2) are the stationary points.

	(1,2)	(1, -2)	(-1,2)	(-1, -2)
A = 6x	6 > 0	6	-6	-6 < 0
B = 0	0	0	0	0
C = 6y	12	-12	12	-12
$AC - B^2$	72 > 0	-72 < 0	-72 < 0	72 > 0
Conclusion	Min. pt.	Saddle pt.	Saddle pt.	Max. pt.

Maximum value of f(x, y) is, f(-1, -2) = -1 - 8 + 3 + 24 + 20 = 38Minimum value of f(x, y) is f(1, 2) = 1 + 8 - 3 - 24 + 20 = 2 **Thus,** Maximum value is 38 and Minimum value is 2. 2) (i) $\log (\sin x) = (11)$

Let
$$k = \lim_{x \to \pi/2} \frac{\log(\sin x)}{(\pi/2 - x)^2} \cdots \left(\frac{0}{0}\right)$$

Applying L' Hospital's rule, $k = \lim_{x \to \pi/2} \frac{\cos x / \sin x}{-2(\pi/2 - x)}$

ie.,
$$= \lim_{x \to \pi/2} \frac{\cot x}{-2(\pi/2 - x)} \dots \left(\frac{0}{0}\right)$$

Now, $k = \lim_{x \to \pi/2} \frac{-\csc^2 x}{2} = \boxed{\frac{-1}{2}}$

(ii)

3)

Let
$$k = \lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x\sin^3 x} \dots \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x \cdot \frac{\sin^3 x}{x^3} \cdot x^3} = \lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x^4} \cdot \lim_{x \to 0} \left(\frac{x}{\sin x}\right)^3$$

Hence,
$$k = \lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x^4} \cdot 1 \dots \left(\frac{0}{0}\right)$$

Applying L' Hospital's rule,

$$k = \lim_{x \to 0} \frac{2x - 2\sin x}{4x^3} \dots \left(\frac{0}{0}\right)$$

=
$$\lim_{x \to 0} \frac{2 - 2\cos x}{12x^2} \dots \left(\frac{0}{0}\right)$$

=
$$\lim_{x \to 0} \frac{2\sin x}{24x} = \frac{1}{12} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{12} \cdot 1 = \boxed{\frac{1}{12}}$$

If x + y + z = u, y + z = v and z = uvw, find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$

$$= \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

It is evident that we should have x, y, z in terms of u, v, w.

Consider $x + y + z = u \dots (1)$, $y + z = v \dots (2)$, $z = uvw \dots (3)$ Using (2) in (1) we have, $x + v = u \qquad \therefore x = u - v$ Also by using (3) in (2) we have, $y + uvw = v \ \therefore y = v - uvw$ Hence, the given data is modified into the form, x = u - v, y = v - uvw, z = uvw

Substituting for the partial derivatives, we have,

$$\therefore \quad J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} 1 & -1 & 0 \\ -vw & (1 - uw) & -uv \\ vw & uw & uv \end{vmatrix}$$
$$= 1\{(1 - uw)uv - (uw)(-uv)\} + 1\{(-vw)(uv) - (vw)(-uv)\}$$
$$= uv - u^2vw + u^2vw - uv^2w + uv^2w = uv; \text{ Thus, } J = uv$$

4)

Let $M = x^2 + y^2 + x$ and N = xy

$$\frac{\partial M}{\partial y} = 2y$$
 and $\frac{\partial N}{\partial x} = y$

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 2y - y = y \dots$$
 near to N.

Now, $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{y}{xy} = \frac{1}{x} = f(x)$ Hence, $I \cdot F = e^{\int f(x)dx} = e^{\int \frac{1}{x}dx} = e^{\log x} = x$ Multiplying the given equation by x, we now have, $M = x^3 + xy^2 + x^2$ and $N = x^2 y$

The solution is $\int M dx + \int N(y) dy = c$

ie.,
$$\int (x^3 + xy^2 + x^2) dx + \int 0 dy = c$$
 or $\frac{x^4}{4} + \frac{x^2y^2}{2} + \frac{x^3}{3} = c$

5)

Solve the equation (px - y)(py + x) = 2p by reducing into Clairaut's form, taking the substitution $X = x^2$, $Y = y^2$

$$Y = y^{2} \Rightarrow \frac{dY}{dy} = 2y$$
Now, $p = \frac{dy}{dx} = \frac{dy}{dY}\frac{dY}{dX}\frac{dX}{dx}$ and let $P = \frac{dY}{dX}$
ie., $p = \frac{1}{2y} \cdot P \cdot 2x$ or $p = \frac{x}{y}P$. That is $p = \frac{\sqrt{X}}{\sqrt{Y}}P$
Consider, $(px - y)(py + x) = 2p$
ie., $\left[\frac{\sqrt{X}}{\sqrt{Y}}P\sqrt{X} - \sqrt{Y}\right]\left[\frac{\sqrt{X}}{\sqrt{Y}}P\sqrt{Y} + \sqrt{X}\right] = 2\frac{\sqrt{X}}{\sqrt{Y}}P$
or $\frac{(PX - Y)}{\sqrt{Y}}(P+1)\sqrt{X} = 2\frac{\sqrt{X}}{\sqrt{Y}}P$
ie., $(PX - Y)(P+1) = 2P$ or $PX - Y = \frac{2P}{P+1}$
ie., $Y = PX - \frac{2P}{P+1}$
This is in the Clairaut's form and hence the associated general solution is
 $Y = cX - \frac{2c}{c+1}$ or $y^{2} = cx^{2} - \frac{2c}{c+1}$

Thus the required general solution of the given equation is $y^2 = cx^2 - \frac{2c}{c+1}$

6) @

$$V = \iiint dx \, dy \, dz$$

$$x/a + y/b + z/c = 1 \quad \therefore \quad z = c \left(1 - x/a - y/b\right)$$

If $z = 0$, then $x/a + y/b = 1 \quad \therefore \quad y = b \left(1 - x/a\right)$
If $z = 0$, $y = 0$ then $x = a$

$$\therefore \quad V = \int_{x=0}^{a} \int_{y=0}^{b(1-x/a)} \int_{z=0}^{c(1-x/a-y/b)} dz \, dy \, dx$$

$$V = \int_{0}^{a} \int_{0}^{b(1-x/a)} \frac{c(1-x/a-y/b)}{(z)_{0}} dy dx$$

$$V = \int_{0}^{a} \int_{0}^{b(1-x/a)} \frac{c(1-x/a-y/b)}{c(1-x/a-y/b)} dy dx$$

$$V = c\int_{0}^{a} \left(y - \frac{x}{a} + (y) - \frac{1}{b} + (\frac{y}{a})\right)_{y=0}^{b(1-x/a)} dx$$

$$V = c\int_{0}^{a} b(1-x/a) - \frac{x}{a} \cdot b(1-x/a) - \frac{1}{2b} + \frac{1}{a} + \frac{x^{2}}{a^{2}} - \frac{1}{2} + \frac{1}{a^{2}} + \frac{x^{2}}{a^{2}} - \frac{1}{2} + \frac{1}{a^{2}} + \frac{x^{2}}{a^{2}} - \frac{1}{2} + \frac{1}{a^{2}} + \frac{x^{2}}{a^{2}} - \frac{1}{a} + \frac{x^{2}}{a^{2}} - \frac{1}{a} + \frac{1}{a^{2}} + \frac{x^{2}}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{a^{2}$$

7)

shaded region - entire first quadrant , integral does not converge in this case since both limits are 0 to infinity After changing order we get

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dx dy$$

or they can change question to
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$$

$$I = \int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} dy dx$$
On changing the order we must have
 $y = 0$ to ∞ and $x = 0$ to y .

$$I = \int_{y=0}^{\infty} \int_{x=0}^{y} \frac{e^{-y}}{y} dx dy = \int_{y=0}^{\infty} \frac{e^{-y}}{y} [x]_{0}^{y} dy$$

$$I = \int_{y=0}^{\infty} \frac{e^{-y}}{y} \cdot y dy = \int_{y=0}^{\infty} e^{-y} dy = -[e^{-y}]_{0}^{\infty} = 1$$

8)

Let,
$$I_1 = \int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} = \int_0^{\pi/2} \sin^{-1/2} \theta \, d\theta = \int_0^{\pi/2} \sin^{-1/2} \theta \cos^0 \theta \, d\theta$$

and
$$I_2 = \int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta = \int_0^{\pi/2} \sin^{1/2} \theta \ d\theta = \int_0^{\pi/2} \sin^{1/2} \theta \cos^0 \theta \ d\theta$$

We have, $\int_0^{\pi/2} \sin^p \theta \cos^q \theta \ d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right)$
Hence $I_1 = \frac{1}{2} \beta \left(\frac{-1/2+1}{2}, \frac{0+1}{2} \right) = \frac{1}{2} \beta \left(\frac{1}{4}, \frac{1}{2} \right)$
 $I_2 = \frac{1}{2} \beta \left(\frac{1/2+1}{2}, \frac{0+1}{2} \right) = \frac{1}{2} \beta \left(\frac{3}{4}, \frac{1}{2} \right)$
 $\therefore \quad I_1 \times I_2 = \frac{1}{4} \beta \left(\frac{1}{4}, \frac{1}{2} \right) \cdot \beta \left(\frac{3}{4}, \frac{1}{2} \right)$
 $I_1 \times I_2 = \frac{1}{4} \frac{\Gamma \left(\frac{1}{4} \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma \left(\frac{3}{4} \right)} \cdot \frac{\Gamma \left(\frac{3}{4} \right) \cdot \Gamma \left(\frac{1}{2} \right)}{\Gamma \left(\frac{5}{4} \right)}$
This, $I_1 \times I_2 = \frac{1}{4} \Gamma \left(\frac{1}{4} \right) \sqrt{\pi} \cdot \frac{\sqrt{\pi}}{1/4 \cdot \Gamma \left(\frac{1}{4} \right)} = \frac{\pi}{2}$